Homework 5 for Math 131BH Honors Analysis

Burt Totaro
Winter 2017, UCLA

Due on Tuesday, February 21.
Rudin, p. 196: 6, 12, 19.
(1) Let

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Draw the graph of f. Show that f is C^{∞} on \mathbf{R}.
(2) Using the definition of $\log x$ for $x>0$ as $\log x=\int_{1}^{x} d t / t$, prove that $\log (x y)=$ $\log (x)+\log (y)$ for all $x, y>0$.

This is a key reason why logarithms were important in scientific computation, from their formal definition by Napier in 1614 until the mid-20th century: once you have a printed table of $\operatorname{logarithms}(\log (2.3178) \doteq 0.84062, \log (2.3179) \doteq 0.84066$, and so on), you can multiply real numbers quickly and with good accuracy, because the logarithm turns multiplication into addition. Explain (briefly) why this makes more sense than just having a printed table of products.

The slide rule is a simple machine for fast multiplication, based on the same principle.
(3) Using the definition of $\log x$ for $x>0$ as $\log x=\int_{1}^{x} d t / t$, show that $\log x$ is analytic, given by a power series centered around $x=1$ with radius of convergence 1. Compute that power series.

