7.2 The Continuous Case. The simplest extension of the minimax theorem to the continuous case is to assume that X and Y are compact subsets of Euclidean spaces, and that $A(x, y)$ is a continuous function of x and y. To conclude that optimal strategies for the players exist, we must allow arbitrary distribution functions on X and Y. Thus if X is a compact subset of m-dimensional space \mathcal{R}^{m}, X^{*} is taken to be the set of all distributions on \mathcal{R}^{m} that give probability 0 to the complement of X. Similarly if Y is n-dimensional, Y^{*} is taken to be the set of all distributions on \mathcal{R}^{n} giving weight 0 to the complement of Y. Then A is extended to be defined on $X^{*} \times Y^{*}$ by

$$
A(P, Q)=\iint A(x, y) d P(x) d Q(y)
$$

Theorem 7.2. If X and Y are compact subsets of Euclidean space and if $A(x, y)$ is a continuous function of x and y, then the game has a value, v, and there exist optimal strategies for the players, that is, there is a $P_{0} \in X^{*}$ and a $Q_{0} \in Y^{*}$ such that

$$
A\left(P, Q_{0}\right) \leq v \leq A\left(P_{0}, Q\right) \quad \text { for all } P \in X^{*} \text { and } Q \in Y^{*} .
$$

Example 1. Suppose Player I chooses $0 \leq x \leq 1$ and Player II choose $0 \leq y \leq 1$ and the payoff is $A(x, y)=g(|x-y|)$ where $g(z)$ is a continuous function defined on $[0,1]$ such that $g(z)=g(1-z)$. Examples of such g are $g(z)=z(1-z), g(z)=\sin (\pi z)$, and $g(z)=\left|z-\frac{1}{2}\right|$.

Here, $X=Y=[0,1]$, and $X^{*}=Y^{*}$ is the set of probability distributions on the unit interval. Since X and Y are compact and $A(x, y)$ is continuous on $[0,1]^{2}$, we have by Theorem 7.2, that the game has a value and the players have optimal strategies. Let us check that the optimal strategies for both players is the uniform distribution on $[0,1]$. If Player II uses a uniform on $[0,1]$ to choose y and Player I uses the pure strategy $x \in[0,1]$, the expected payoff to Player I is

$$
\begin{aligned}
\int_{0}^{1} g(|x-y|) d y & =\int_{0}^{x} g(x-y) d y+\int_{x}^{1} g(y-x) d y \\
& =\int_{0}^{x} g(1-x+y) d y+\int_{0}^{1-x} g(z) d z \\
& =\int_{1-x}^{1} g(z) d z+\int_{0}^{1-x} g(z) d z=\int_{0}^{1} g(z) d z
\end{aligned}
$$

Since this is independent of x, Player II's strategy is an equalizer strategy, guaranteeing her an average loss of at most $\int_{0}^{1} g(z) d z$. Clearly, the same analysis gives Player I at least this amount if he chooses x at random according to a uniform distribution on [0,1]. So these strategies are optimal and the value is $v=\int_{0}^{1} g(z) d z$. It may be noticed that this example is a continuous version of a Latin square game.

A One-Sided Minimax Theorem. In the way that Theorem 7.1 generalized the finite minimax theorem, we would like to generalize Theorem 7.2 to the case where X is Euclidean, while allowing y to be arbitrary. We can do this if we keep the compactness condition for Player I and assume that $A(x, y)$ is a continuous function of x for all y. And even this can be weakened to assuming only that $A(x, y)$ is an upper semi-continuous function of x for all y.

Theorem 7.3. If X is a compact subset of Euclidean space, and if $A(x, y)$ is an upper semi-continuous function of x for all $y \in Y$ and if A is bounded below (or if Y^{*} is the set of finite mixtures), then the game has a value, Player I has an optimal strategy in X^{*}, and for every $\epsilon>0$ Player II has an ϵ-optimal strategy giving weight to a finite number of points.

Similarly from Player II's viewpoint, if Y is a compact subset of Euclidean space, and if $A(x, y)$ is an lower semi-continuous function of y for all $x \in X$ and if A is bounded above (or if X^{*} is the set of finite mixtures), then the game has a value and Player II has an optimal strategy in Y^{*}.

Example 2. Player I chooses a number in $[0,1]$ and Player II tries to guess what it is. Player I wins 1 if Player II's guess is off by at least $1 / 3$; otherwise, there is no payoff.

Thus, $X=Y=[0,1]$, and $A(x, y)=\left\{\begin{array}{ll}1 & \text { if }|x-y| \geq 1 / 3 \\ 0 & \text { if }|x-y|<1 / 3\end{array}\right.$. Although the payoff function is not continuous, it is upper semi-continuous in x for every $y \in Y$. Thus the game has a value and Player I has an optimal mixed strategy.

If we change the payoff so that Player I wins 1 if Player II's guess is off by more than $1 / 3$, then $A(x, y)=\left\{\begin{array}{ll}1 & \text { if }|x-y|>1 / 3 \\ 0 & \text { if }|x-y| \leq 1 / 3\end{array}\right.$. This is no longer upper semi-continuous in x for fixed y; instead it is lower semi-continuous in y for each $x \in X$. This time, the game has a value and Player II has an optimal mixed strategy.

Exercise 4. Solve the two games of Example 2. Hint: Use domination to remove some pure strategies.

Solution. 4. (a) For the upper semi-continuous payoff, the value is $1 / 2$. An optimal strategy for Player I is to choose 0 and 1 with probability $1 / 2$ each. For any $0<\epsilon<1 / 6$, an optimal strategy for Player II is choose $1 / 3-\epsilon$ and $2 / 3+\epsilon$ with probability $1 / 2$ each.
(b) For the lower-semi continuous payoff, the value is $1 / 2$. An optimal strategy for Player II is to choose $1 / 3$ and $2 / 3$ with probability $1 / 2$ each. Player I has an optimal strategy here too. It is the same as above, namely, to choose 0 and 1 with probability $1 / 2$ each.

