
7.2 The Continuous Case. The simplest extension of the minimax theorem to the
continuous case is to assume that X and Y are compact subsets of Euclidean spaces, and
that A(x, y) is a continuous function of x and y. To conclude that optimal strategies for
the players exist, we must allow arbitrary distribution functions on X and Y . Thus if X is
a compact subset of m-dimensional space Rm, X∗ is taken to be the set of all distributions
on Rm that give probability 0 to the complement of X. Similarly if Y is n-dimensional,
Y ∗ is taken to be the set of all distributions on Rn giving weight 0 to the complement of
Y . Then A is extended to be defined on X∗ × Y ∗ by

A(P,Q) =
∫ ∫

A(x, y)dP (x)dQ(y)

Theorem 7.2. If X and Y are compact subsets of Euclidean space and if A(x, y) is a
continuous function of x and y, then the game has a value, v, and there exist optimal
strategies for the players, that is, there is a P0 ∈ X∗ and a Q0 ∈ Y ∗ such that

A(P,Q0) ≤ v ≤ A(P0, Q) for all P ∈ X∗ and Q ∈ Y ∗.

Example 1. Suppose Player I chooses 0 ≤ x ≤ 1 and Player II choose 0 ≤ y ≤ 1
and the payoff is A(x, y) = g(|x − y|) where g(z) is a continuous function defined on [0, 1]
such that g(z) = g(1 − z). Examples of such g are g(z) = z(1 − z), g(z) = sin(πz), and
g(z) = |z − 1

2
|.

Here, X = Y = [0, 1], and X∗ = Y ∗ is the set of probability distributions on the
unit interval. Since X and Y are compact and A(x, y) is continuous on [0, 1]2, we have by
Theorem 7.2, that the game has a value and the players have optimal strategies. Let us
check that the optimal strategies for both players is the uniform distribution on [0, 1]. If
Player II uses a uniform on [0,1] to choose y and Player I uses the pure strategy x ∈ [0, 1],
the expected payoff to Player I is∫ 1

0

g(|x − y|)dy =
∫ x

0

g(x − y)dy +
∫ 1

x

g(y − x)dy

=
∫ x

0

g(1 − x + y)dy +
∫ 1−x

0

g(z)dz

=
∫ 1

1−x

g(z)dz +
∫ 1−x

0

g(z)dz =
∫ 1

0

g(z)dz

Since this is independent of x, Player II’s strategy is an equalizer strategy, guaranteeing
her an average loss of at most

∫ 1

0
g(z)dz. Clearly, the same analysis gives Player I at least

this amount if he chooses x at random according to a uniform distribution on [0,1]. So
these strategies are optimal and the value is v =

∫ 1

0
g(z)dz. It may be noticed that this

example is a continuous version of a Latin square game.

A One-Sided Minimax Theorem. In the way that Theorem 7.1 generalized the
finite minimax theorem, we would like to generalize Theorem 7.2 to the case where X is
Euclidean, while allowing y to be arbitrary. We can do this if we keep the compactness
condition for Player I and assume that A(x, y) is a continuous function of x for all y.
And even this can be weakened to assuming only that A(x, y) is an upper semi-continuous
function of x for all y.
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Theorem 7.3. If X is a compact subset of Euclidean space, and if A(x, y) is an upper
semi-continuous function of x for all y ∈ Y and if A is bounded below (or if Y ∗ is the set
of finite mixtures), then the game has a value, Player I has an optimal strategy in X∗,
and for every ε > 0 Player II has an ε-optimal strategy giving weight to a finite number of
points.

Similarly from Player II’s viewpoint, if Y is a compact subset of Euclidean space, and
if A(x, y) is an lower semi-continuous function of y for all x ∈ X and if A is bounded above
(or if X∗ is the set of finite mixtures), then the game has a value and Player II has an
optimal strategy in Y ∗.

Example 2. Player I chooses a number in [0,1] and Player II tries to guess what it
is. Player I wins 1 if Player II’s guess is off by at least 1/3; otherwise, there is no payoff.

Thus, X = Y = [0, 1], and A(x, y) =
{

1 if |x − y| ≥ 1/3
0 if |x − y| < 1/3. Although the payoff

function is not continuous, it is upper semi-continuous in x for every y ∈ Y . Thus the
game has a value and Player I has an optimal mixed strategy.

If we change the payoff so that Player I wins 1 if Player II’s guess is off by more than

1/3, then A(x, y) =
{

1 if |x − y| > 1/3
0 if |x − y| ≤ 1/3. This is no longer upper semi-continuous in x

for fixed y; instead it is lower semi-continuous in y for each x ∈ X. This time, the game
has a value and Player II has an optimal mixed strategy.

Exercise 4. Solve the two games of Example 2. Hint: Use domination to remove
some pure strategies.

Solution. 4. (a) For the upper semi-continuous payoff, the value is 1/2. An optimal
strategy for Player I is to choose 0 and 1 with probability 1/2 each. For any 0 < ε < 1/6,
an optimal strategy for Player II is choose 1/3 − ε and 2/3 + ε with probability 1/2 each.

(b) For the lower-semi continuous payoff, the value is 1/2. An optimal strategy for
Player II is to choose 1/3 and 2/3 with probability 1/2 each. Player I has an optimal
strategy here too. It is the same as above, namely, to choose 0 and 1 with probability 1/2
each.
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