Large Sample Theory

Ferguson

Exercises, Section 24, General Chi-Square Tests.

1. (a) It is suspected that a certain contingency table with r rows and c columns has homogeneous cells except that edge and corner cells differ in some way from the central cells. Based on data from n trials with $n_{i j}$ observations falling in cell (i, j), find the χ^{2} test of the hypothesis H_{1} that the four corner cells have probability q_{1} each, the $2(r+c-4)$ edge cells not at a corner have probability q_{2} each, and the remaining $(r-2)(c-2)$ cells have probability q_{3} each, where $4 q_{1}+2(r+c-4) q_{2}+(r-2)(c-2) q_{3}=1$.
(b) Find the χ^{2} test of the hypothesis H_{0}, that all cells are equally likely, against the hypothesis $H_{1}-H_{0}$.
2. A theory predicts that the probabilities for the four cells of a certain multinomial experiment are $p_{1}=3 \theta, p_{2}=(1 / 2)-\theta, p_{3}=(1 / 3)-\theta$ and $p_{4}=(1 / 6)-\theta$, for some unknown parameter $0<\theta<1 / 6$. A sample of size 100 from this multinomial distribution gave the results $n_{1}=30, n_{2}=50, n_{3}=10$ and $n_{4}=10$ for the four cells respectively.
(a) Find the minimum modified χ^{2} estimate of θ.
(b) Compute the χ^{2}-statistic for testing the correctness of the theory. How many degrees of freedom does this χ^{2} have? Do you accept or reject the theory at the 5% level?
3. A large population of individuals is cross-classified into categories (i, j), for $i=$ $1,2,3$, and $j=1,2,3$. A sample of n individuals is taken from this population (with replacement) and the observed frequencies, $n_{i j}$, are noted. Let $p_{i j}$ denote the true population probabilities.
(a) Give a χ^{2} statistic for testing the hypothesis $H_{0}: p_{11}=p_{22}=p_{33}$, and $p_{12}=$ $p_{21}=p_{13}=p_{31}=p_{23}=p_{32}$.
(b) Give the approximate large sample distribution of the statistic under H_{0}.
(c) Give the approximate large sample distribution of the statistic when $p_{11}=p_{22}=$ $p_{33}=.16, p_{12}=p_{21}=p_{23}=p_{32}=.10$ and $p_{13}=p_{31}=.06$.
4. Consider a 2 by c contingency table with probability $p_{i j}$ for cell (i, j) for $i=1,2$ and $j=1, \ldots, c$, where $\sum_{i=1}^{2} \sum_{j=1}^{c} p_{i j}=1$. Data from n trials show that $n_{i j}$ observations fell in cell (i, j).
(a) Find the χ^{2} test of the hypothesis H_{1} that $p_{1 j}=p_{2 j}$ for all j. How many degrees of freedom?
(b) Find the χ^{2} test of the hypothesis H_{0}, that all cells are equally likely. How many degrees of freedom?
(c) Find the χ^{2} test of H_{0} against $H_{1}-H_{0}$. How many degrees of freedom?
5. N balls are distributed at random into $I \times J$ cells, where cell (i, j) has probability $p_{i j} \geq 0$, for $i=1, \ldots, I$, and $j=1, \ldots, J$, with $\sum_{i} \sum_{j} p_{i j}=1$. Let $n_{i j}$ represent the number of balls that fall in cell $(i, j), \sum_{i} \sum_{j} n_{i j}=N$.
(a) Find the χ^{2} test of the hypothesis $H: \sum_{j} p_{i j}=1 / I$, for $i=1, \ldots, I$. How many degrees of freedom?
(b) Find the χ^{2} test of the hypothesis $H_{0}: p_{i j}$ is independent of i (that is, $p_{1 j}=p_{2 j}=$
$\ldots=p_{I j}$ for $\left.j=1, \ldots, J\right)$. How many degrees of freedom?
(c) Find the χ^{2} test of H_{0} against $H-H_{0}$. How many degrees of freedom?
6. Some $I \times J$ contingency tables are constructed for K different populations. Let $\pi_{i j k}$ denote the probability of falling in cell (i, j) for population k, where i goes from 1 to I, j goes from 1 to J, and k goes from 1 to K, and where $\sum_{i} \sum_{j} \pi_{i j k}=1$ for all k. Let $n_{i j k}$ denote the number of observations falling in cell (i, j) for population k, where $n_{. . k}=\sum_{i} \sum_{j} n_{i j k}$ is the sample size taken from population k.
(a) What is the chi-square test for testing the hypothesis that the $\pi_{i j k}$ have specific values, and how many degrees of freedom does it have?
(b) Suppose the $\pi_{i j k}$ are unknown, and we want to test the hypothesis that for each population, k, the factors are independent, and that the populations are homogeneous for the first factor. This is the hypothesis, $H_{0}: \pi_{i j k}=p_{i} q_{j k}$, for some probabilities p_{i} and $q_{j k}$ such that $\sum_{i} p_{i}=1$ and $\sum_{j} q_{j k}=1$ for $k=1, \ldots, K$. What is the chi-square test of H_{0} ? Give the estimates of the parameters under H_{0}, the chi-square statistic, and the number of degrees of freedom.
7. N balls are distributed at random into $I \times J$ cells, where cell (i, j) has probability $p_{i j} \geq 0$, for $i=1, \ldots, I$, and $j=1, \ldots, J$, and $\sum_{i} \sum_{j} p_{i j}=1$. Let $n_{i j}$ represent the number of balls that fall in cell (i, j), so that $\sum_{i} \sum_{j} n_{i j}=N$.
(a) Find the Pearson's χ^{2} test statistic for testing the hypothesis $H_{0}: p_{i j}$ is independent of i (that is, $p_{1 j}=\cdots=p_{I j}$ for $j=1, \ldots, J$). How many degrees of freedom does it have?
(b) Suppose the true values of the $p_{i j}$ satisfy

$$
p_{i j}=\frac{\left(1+\epsilon_{i}\right)}{I J} \quad \text { for all } i \text { and } j
$$

where the ϵ_{i} are small numbers (say $\left|\epsilon_{i}\right|<1$ for all i) satisfying $\sum_{1}^{I} \epsilon_{i}=0$ (so that $\sum_{i} \sum_{j} p_{i j}=1$). For large N, the distribution of the chi-square of part (a) may be approximated by a non-central chi-square with how many degrees of freedom and with what non-centrality parameter?

