Large Sample Theory

Ferguson
Exercises, Section 22, Asymptotic Distribution of the Likelihood Ratio Test Statistic.

1. Consider the model, $Y_{i}=\alpha+\beta x_{i}+\epsilon_{i}$ for $i=1,2, \ldots, n$, where the x_{i} are known numbers not all equal, where the ϵ_{i} are i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$, and where the parameters $\left(\alpha, \beta, \sigma^{2}\right)$ are unknown.
(a) What is the likelihood ratio test of the hypothesis $H_{0}: \alpha=\beta$? Give its exact distribution.
(b) What is the likelihood ratio test of H_{0} when σ^{2} is known? Give its exact distribution.
2. (a) Let $X_{i j}$ be independent random variables with $X_{i j} \in \mathcal{P}\left(\lambda_{i j}\right)$ for $i=1, \ldots, n$, and $j=1, \ldots, k$. Find the likelihood ratio test of $H_{0}: \lambda_{i j}=j \lambda$ for some $\lambda>0$, for $i=1, \ldots, n$, and $j=1, \ldots, k$, against $H_{1}-H_{0}$ where $H_{1}: \lambda_{i j}$ is independent of i (i.e. $\lambda_{i j}=\lambda_{j}$ for some numbers $\left.\lambda_{j}>0\right), i=1, \ldots, n$, and $j=1, \ldots, k$.
(b) Describe the asymptotic distribution of the likelihood ratio test statistic under H_{0} as $n \rightarrow \infty$, with k fixed.
3. Let $X_{i j}$ be independent with $X_{i j}$ having the exponential distribution with density $f\left(x \mid \beta_{i}\right)=\beta_{i}^{-1} e^{-x / \beta_{i}}$ for $i=1, \ldots, k$ and $j=1, \ldots, n$.
(a) Find the likelihood ratio test of the hypothesis $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}$.
(b) Describe how to find the cutoff point for a size α test of H_{0} when n is large.
4. (a) Let X_{1}, \ldots, X_{n} be a sample from $\mathcal{N}\left(\theta_{1}, 1\right)$, and let Y_{1}, \ldots, Y_{n} be an independent sample from $\mathcal{N}\left(\theta_{2}, 1\right)$. Find the likelihood ratio test of the hypothesis $H_{0}: \theta_{1}=\theta_{2}=0$, within the general hypothesis, $H: \theta_{1} \geq 0$, or $\theta_{2} \geq 0$. (The parameter space is the plane with the negative quadrant removed.)
(b) What is the (asymptotic) distribution of $-2 \log \lambda_{n}$ for this problem? You should be able to give directions for finding the cutoff point for a given level of significance, α.
5. Let X_{1}, \ldots, X_{n} be a sample from the Poisson distribution with density $f(x \mid \mu)=$ $e^{-\mu} \mu^{x} / x!$ for $x=0,1, \ldots$, and let Y_{1}, \ldots, Y_{n} be an independent sample from the Poisson distribution with density $f(y \mid \theta)$, where $\mu>0$ and $\theta>0$ are unknown parameters.
(a) Find the likelihood ratio test statistic for testing $H_{0}: \mu=\theta^{2}$.
(b) What is its asymptotic distribution under H_{0} ?
6. Under $H_{1}, X_{1}, \ldots, X_{n}$ are independent with $X_{i} \in \mathcal{G}\left(1, \theta_{i}\right)$ (exponential distribution with mean θ_{i}. Under H_{0}, all θ_{i} are equal, say $X_{i} \in \mathcal{G}(1, \theta)$.
(a) Find the likelihood ratio test statistic, λ_{n}, for testing H_{0} against H_{1}.
(b) Find the asymptotic distribution of $\log \lambda_{n}$, suitably normalized, under H_{0}.
(c) Why doesn't Theorem 22 apply?
