Large Sample Theory Ferguson

Exercises, Section 14, Asymptotic Theory of Extreme Order Statistics.

1. Let X_1, \ldots, X_n be a sample from a distribution with distribution function F(x)and let $M_n = \max\{X_1, \ldots, X_n\}$ be the maximum of the sample. Find a normalization, $(M_n - a_n)/b_n$, if any exists, that has a nondegenerate limiting distribution as $n \to \infty$, for the following distributions:

(a) The logistic distribution with density $f(x) = e^{-x}/(1+e^{-x})^2$.

(b) The distribution with distribution function $F(x) = 1 - (\log(x+1))/x$ for x > 0.

(c) The cosine distribution with density $f(x) = (1/2)\cos(x) I(-\pi/2 < x < \pi/2)$.

2. Suppose X has the $G_{1,\gamma}(x)$ distribution, and let $Y = \gamma(X-1)$. Show that as $\gamma \to \infty$, Y converges in law to the G_3 distribution.

3. Suppose in Example 6 that $F(x) = \Phi(x-\mu)$ so that we are sampling from a normal distribution with mean μ .

(a) Find the asymptotic distribution of M_n .

(b) Show that

$$\hat{\mu}_n \stackrel{\text{def}}{=} M_n - \sqrt{2\log n} \stackrel{P}{\longrightarrow} \mu.$$

Thus $\hat{\mu}_n$ is a consistent estimate of μ . What is its asymptotic efficiency relative to \overline{X}_n ?

4. Let X_1, \ldots, X_n be a sample from the distribution on the interval $(-\pi/2, 0)$, with distribution function $F(x) = \cos(x)$ for $-\pi/2 < x < 0$, and let M_n represent the maximum of the sample.

(a) What is the distribution function of M_n ?

(b) Find b_n such that M_n/b_n converges in law to a nondegenerate distribution and find the distribution.

5. Let X_1, X_2, \ldots be i.i.d. from a distribution with density f(x) such that f(x) = 0for x < a, f(a) > 0 and f(x) is right continuous at a. Show that $n[\min\{X_1, \ldots, X_n\} - a]$ converges in law to the exponential distribution with rate parameter f(a) (i.e. mean 1/f(a)).

6. What can you say about the asymptotic distribution of $\min\{X_1, \ldots, X_n\}$ when X_1, \ldots, X_n are i.i.d. with distribution G_3 ? What is the exact distribution?