Large Sample Theory

Ferguson

Exercises, Section 14, Asymptotic Theory of Extreme Order Statistics.

1. Let X_{1}, \ldots, X_{n} be a sample from a distribution with distribution function $F(x)$ and let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ be the maximum of the sample. Find a normalization, $\left(M_{n}-a_{n}\right) / b_{n}$, if any exists, that has a nondegenerate limiting distribution as $n \rightarrow \infty$, for the following distributions:
(a) The logistic distribution with density $f(x)=e^{-x} /\left(1+e^{-x}\right)^{2}$.
(b) The distribution with distribution function $F(x)=1-(\log (x+1)) / x$ for $x>0$.
(c) The cosine distribution with density $f(x)=(1 / 2) \cos (x) \mathrm{I}(-\pi / 2<x<\pi / 2)$.
2. Suppose X has the $G_{1, \gamma}(x)$ distribution, and let $Y=\gamma(X-1)$. Show that as $\gamma \rightarrow \infty, Y$ converges in law to the G_{3} distribution.
3. Suppose in Example 6 that $F(x)=\Phi(x-\mu)$ so that we are sampling from a normal distribution with mean μ.
(a) Find the asymptotic distribution of M_{n}.
(b) Show that

$$
\hat{\mu}_{n} \stackrel{\text { def }}{=} M_{n}-\sqrt{2 \log n} \xrightarrow{P} \mu .
$$

Thus $\hat{\mu}_{n}$ is a consistent estimate of μ. What is its asymptotic efficiency relative to \bar{X}_{n} ?
4. Let X_{1}, \ldots, X_{n} be a sample from the distribution on the interval $(-\pi / 2,0)$, with distribution function $F(x)=\cos (x)$ for $-\pi / 2<x<0$, and let M_{n} represent the maximum of the sample.
(a) What is the distribution function of M_{n} ?
(b) Find b_{n} such that M_{n} / b_{n} converges in law to a nondegenerate distribution and find the distribution.
5. Let X_{1}, X_{2}, \ldots be i.i.d. from a distribution with density $f(x)$ such that $f(x)=0$ for $x<a, f(a)>0$ and $f(x)$ is right continuous at a. Show that $n\left[\min \left\{X_{1}, \ldots, X_{n}\right\}-a\right]$ converges in law to the exponential distribution with rate parameter $f(a)$ (i.e. mean $1 / f(a)$).
6. What can you say about the asymptotic distribution of $\min \left\{X_{1}, \ldots, X_{n}\right\}$ when X_{1}, \ldots, X_{n} are i.i.d. with distribution G_{3} ? What is the exact distribution?

