Large Sample Theory

Ferguson

Exercises, Section 12, Some Rank Statistics.

1. Suppose $z_{j}=j$ and $a(j)=1 / \sqrt{j}$ for all $j=1,2, \ldots$. Find the asymptotic distribution of $S_{N}=\sum_{1}^{N} z_{j} a\left(R_{j}\right)$, where $\left(R_{1}, \ldots, R_{N}\right)$ is a random permutation of $(1, \ldots, N)$ with each permutation having probability $1 / N$!.
2. The van der Waerden Test is a competitor of the Rank-Sum Test, in which the value an observation of rank r is replaced by $\psi(r /(N+1))$ where $\psi=\Phi^{-1}$ is the inverse of the standard normal distribution function. Thus, the van der Waerden Statistic is of the form $S_{N}=\sum_{j=1}^{N} z_{j} a\left(R_{j}\right)$ with $z_{j}=\psi(j /(N+1))$ and $a(j)$ as in Example 3.
(a) Note $\bar{z}=0$. Show that $\sigma_{z}^{2} \rightarrow 1$ as $N \rightarrow \infty$.
(b) Suppose that $n / N \rightarrow r$ as $N \rightarrow \infty$, with $0<r<1$. Is it true that $\sqrt{N} S_{N} \xrightarrow{\mathcal{L}}$ $\mathcal{N}(0, r(1-r))$?
3. Show for general $S_{N}=\sum_{1}^{N} z_{j} a\left(R_{j}\right)$,

$$
\mathrm{E}\left(S_{N}-\mathrm{E} S_{N}\right)^{3}=\frac{N^{3}}{(N-1)(N-2)} \mu_{3}(z) \mu_{3}(a)
$$

where

$$
\mu_{3}(z)=(1 / N) \sum_{1}^{N}\left(z_{j}-\bar{z}_{N}\right)^{3} \quad \text { and } \quad \mu_{3}(a)=(1 / N) \sum_{1}^{N}\left(a(j)-\bar{a}_{N}\right)^{3} .
$$

(The third central moment of S_{N} may be useful in improving the normal approximation through the Edgeworth expansion.)
4.(a) Let $Z=\sum_{1}^{N} z_{j} a\left(R_{j}\right)$ and $T=\sum_{1}^{N} t_{j} b\left(R_{j}\right)$. Generalize Lemma 1 by showing that $\operatorname{Cov}(Z, T)=\left(N^{2} /(N-1)\right) \sigma_{z t} \sigma_{a b}$ where

$$
\sigma_{z t}=\frac{1}{N} \sum_{1}^{N}\left(z_{j}-\bar{z}_{N}\right)\left(t_{j}-\bar{t}_{N}\right) \quad \text { and } \quad \sigma_{a b}=\frac{1}{N} \sum_{1}^{N}\left(a(j)-\bar{a}_{N}\right)\left(b(j)-\bar{b}_{N}\right)
$$

(b) If $z_{j}=t_{j}=b(j)=j$ and $a(j)=\mathrm{I}(1 \leq j \leq m)$, then Z is the rank-sum test statistic and T is the statistic of Example 5, related to Spearman's rho. Assume $\sqrt{N}((m / N)-r) \rightarrow 0$ as $N \rightarrow \infty, r \in(0,1)$, and show

$$
\sqrt{N}\left(\binom{Z / N^{2}}{T / N^{3}}-\binom{r / 2}{1 / 4}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{cc}
\frac{r(1-r)}{12} & -\frac{r(1-r)}{24} \\
-\frac{r(1-r)}{24} & \frac{1}{144}
\end{array}\right)\right) .
$$

5. In sampling from a population of N objects having values $z_{1}, z_{2}, \ldots, z_{N}$, first a sample of size $n<N / 2$ is taken without replacement. Later a second sample of size n is
taken from the remaining $N-n$ objects without replacement. The difference of the means of the two samples is used to compare the samples. This leads to a rank statistic of the form $S_{N}=\sum_{1}^{N} z_{j} a\left(R_{j}\right)$, where $a(i)=1$ for $i=1, \ldots, n, a(i)=-1$ for $i=n+1, \ldots, 2 n$, and $a(i)=0$ for $i=2 n+1, \ldots, N$.
(a) What is the mean and the variance of S_{N} ?
(b) Assume that $n \rightarrow \infty$ as $N \rightarrow \infty$. Under what condition on the z_{i} is it true that $\left(S_{N}-\mathrm{E} S_{N}\right) / \sqrt{\operatorname{Var}\left(S_{N}\right)} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$?
6. Let a sample of size n be taken from each of three distributions, and let T_{N}, respectively V_{N}, denote the sum of the ranks of the observations from the first, respectively second, distribution when all $N=3 n$ observations are ranked in order from 1 to N. Let $S_{N}=b_{1} T_{N}+b_{2} V_{N}$, for arbitrary real numbers b_{1} and b_{2}. Let H_{0} be the hypothesis that the three distributions are identical.
(a) Show that S_{N} is a linear rank statistic under H_{0} of the form $S_{N}=\sum_{j=1}^{N} z_{j} a\left(R_{j}\right)$ where $z_{j}=j$; that is, find $a(i)$ for $i=1, \ldots, N$.
(b) We have $\bar{z}_{N}=(N+1) / 2$ and $\sigma_{z}^{2}=\left(N^{2}-1\right) / 12$. Find the asymptotic distribution of S_{N}.
(c) Find the asymptotic joint distribution of T_{N} and V_{N}. (Use the Cramér-Wold device of Exercise 3.2, p. 18.)
