Large Sample Theory

Ferguson

Exercises, Section 11, Stationary m-Dependent Sequences.

1. A Moving Average Process. (a) Suppose X_{1}, X_{2}, \ldots are i.i.d. unobservable (latent) random variables with an unknown distribution having finite mean μ and variance σ_{x}^{2}. The observations are $Y_{t}=\beta_{0} X_{t}+\beta_{1} X_{t+1}+\cdots+\beta_{m} X_{t+m}$ for $t=1,2, \ldots$, where the β_{i} are constants. Such a process Y_{1}, Y_{2}, \ldots is said to be a moving average process of order m. Find the asymptotic distribution of \bar{Y}_{n}.
(b) What happens if $\beta_{0}+\beta_{1}+\cdots+\beta_{m}=0$? Can you find a normalization that gives a nondegenerate limit?
2. Usually a normalizing condition is placed on a moving average process, either $\sum \beta_{i}=1$ or $\beta_{0}=1$ or $\sigma_{x}^{2}=1$. Take $m=1, \mu_{x}=0$ and $\sigma_{x}^{2}=1$ in Problem 1 above. How would you go about finding consistent estimators of β_{0} and β_{1} ? Be careful. The β_{i} may not be identifiable without further restrictions (that may be made without loss of generality). In particular, what should the parameter space be?
3. An Auto-Regressive Process. Consider Exercise 11.7 with $z_{j}=0$ for $j<0$ and $z_{j}=\beta^{j}$ for $j \geq 0$, where $|\beta|<1$. Then $Y_{t}=\sum_{0}^{\infty} \beta^{j} X_{t-j}=\beta Y_{t-1}+X_{t}$ for all t, so this is just the auto-regressive model investigated in Exercises 4.2 and 6.3. Use Exercise 11.7 of the text to find the asymptotic distribution of $\bar{Y}_{n}=n^{-1} \sum_{1}^{n} Y_{j}$.
4. An ARMA (Auto-Regressive Moving Average) Model. We may combine the auto-regressive process of Exercise 3 with a moving average process of Exercise 1 to obtain an ARMA model, the simplest of which is $Y_{t}=\beta_{0} Y_{t-1}+\beta_{1} X_{t-1}+X_{t}$, where $\left|\beta_{0}\right|<1$. Assume stationarity of the Y_{t} and use Exercise 11.7 to find the asymptotic distribution of \bar{Y}_{n}.
5. (a) Extend Theorem 11 to the multivariate case. (The simplest way is to use Theorem 11 in one dimension together with the "Cramér-Wold device", namely, Exercise 2 of Section 3.) Be careful. Remember that for vectors, $\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})$, defined as $\mathrm{E}\left(\boldsymbol{X} \boldsymbol{Y}^{T}\right)$ $\mathrm{E}(\boldsymbol{X}) \mathrm{E}(\boldsymbol{Y})^{T}$, is not necessarily the same as $\operatorname{Cov}(\boldsymbol{Y}, \boldsymbol{X})$.
(b) Apply the result of part (a), to the badminton problem, Exercise 3 of Section 11. Find the joint asymptotic distribution of the number of successes, $R_{n}=\sum_{1}^{n} X_{i}$, and the number of points scored by time $n, S_{n}=\sum_{1}^{n} X_{i-1} X_{i}$.
6. Let $X_{0}, X_{1}, X_{2}, \ldots$ be a sequence of independent Bernoulli trials with probability p of success. Each success is worth one point but two successes in a row gives an extra point. So the number of points received on the nth trial is

$$
Y_{n}= \begin{cases}2 & \text { if } X_{n} \text { and } X_{n-1} \text { are successes } \\ 1 & \text { if } X_{n} \text { is a success and } X_{n-1} \text { is a failure } \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the mean and the variance of Y_{n}.
(b) Find the asymptotic distribution of $S_{n}=\sum_{1}^{n} Y_{i}$ (properly normalized).

