Large Sample Theory

Ferguson

Exercises, Section 9, Pearson's Chi-Square.

1. A die was tossed 300 times and the uppermost face was recorded. The data are

face	1	2	3	4	5	6
frequency	46	58	59	35	45	57

It is desired to test the hypothesis that the die is fair, $H_{0}: p_{i}=1 / 6$ for $i=1, \ldots, 6$. Compute (a) Pearson's χ^{2}, (b) the Neyman χ^{2}, (c) the Hellinger χ^{2}, for testing H_{0} with this data, and compare with the 5% cut-off point of the appropriate distribution.
2. Find the transformed χ^{2} where each cell is transformed by the reciprocal transformation. What is the modified transformed χ^{2} for this transformation?
3. (a) One measure of the homogeneity of a multinomial population with k cells and probabilities, $\boldsymbol{p}=\left(p_{1}, \ldots, p_{k}\right)$, is the sum of the squares of the probabilities, $S(\boldsymbol{p})=\sum_{1}^{k} p_{i}^{2}$. Note that $1 / k \leq S(\boldsymbol{p}) \leq 1$, with higher values indicating greater heterogeneity. Given a sample of size n from this population (with replacement), we may estimate $S(\boldsymbol{p})$ by $S(\hat{\boldsymbol{p}})$, where $\hat{\boldsymbol{p}}=\left(\hat{p}_{1}, \ldots, \hat{p}_{k}\right)$ and \hat{p}_{i} is the proportion of the observations that fall in cell i. What is the asymptotic distribution of $S(\hat{\boldsymbol{p}})$?
(b) Another measure of homogeneity often used is Shannon entropy, defined as $H(\boldsymbol{p})=$ $-\sum_{1}^{k} p_{i} \log p_{i}$, with $0 \leq H(\boldsymbol{p}) \leq \log k$, and with higher values indicating greater homogeneity. What is the asymptotic distribution of $H(\hat{\boldsymbol{p}})$?
4. Consider a multinomial experiment with 4 cells, sample size n, and vector of probabilities $\boldsymbol{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$. Let n_{i} denote the number of observations falling in cell i for $i=1, \ldots, 4$, where $n_{1}+n_{2}+n_{3}+n_{4}=n$. Let $X_{n}=n_{1}+n_{2}$ and $Y_{n}=n_{1}+n_{3}$. Find the joint asymptotic distribution of X_{n} and Y_{n}.
5. Modification of Pearson's chi-square, $\chi_{P}^{2}=(1 / n) \sum_{1}^{c}\left(\hat{p}_{i}-p_{i}\right)^{2} / p_{i}$, may be achieved by replacing the p_{i} in the denominator by any estimate, $\tilde{p}_{i}=f\left(p_{i}, \hat{p}_{i}\right)$, such $\tilde{p}_{i} \xrightarrow{\mathrm{P}} p_{i}$ for all i as $n \rightarrow \infty$. The resulting modified chisquare, $\chi_{M}^{2}=(1 / n) \sum_{1}^{c}\left(\hat{p}_{i}-p_{i}\right)^{2} / f\left(p_{i}, \tilde{p}_{i}\right)$, still has an asymptotic χ_{n-1}^{2} distribution. Show that Hellinger's χ^{2}, in addition to being a transformed χ^{2}, is also a modified χ^{2}. In particular, find $f\left(p_{i}, \hat{p}_{i}\right)$ such that $f\left(p_{i}, \hat{p}_{i}\right) \xrightarrow{\mathrm{P}} p_{i}$ and $\chi_{M}^{2}=\chi_{H}^{2}$.
6. Let X and Y be 2 -valued random variables taking on values 1 and 2 , and let $p_{i j}=\mathrm{P}(X=i, Y=j)$ for $i=1,2$ and $j=1,2$, where $\sum_{i} \sum_{j} p_{i j}=1$. The parameter $\theta=\frac{p_{11} p_{22}}{p_{12} p_{21}}$ is called the odds-ratio and may be used as a measure of association between X and $Y . X$ and Y are independent if $\theta=1$ (Show this), positively associated if $\theta>1$, and negatively associated if $\theta<1$.

Suppose a sample of size n is taken from the distribution of (X, Y), with $n_{i j}$ observations falling in "cell" (i, j), where $\sum_{i} \sum_{j} n_{i j}=n$.
(a) The sample estimate of θ is $\hat{\theta}_{n}=\frac{\hat{p}_{11} \hat{p}_{22}}{\hat{p}_{12} \hat{p}_{21}}$, where $\hat{p}_{i j}=n_{i j} / n$. What is the asymptotic distribution of $\hat{\theta}_{n}$ as $n \rightarrow \infty$?
(b) Let $\vartheta=\log (\theta)$ be the \log odds-ratio. Find the asymptotic distribution of $\hat{\vartheta}_{n}=$ $\log \left(\hat{\theta}_{n}\right)$ as an estimate of ϑ.

