## Large Sample Theory Ferguson

## Exercises, Section 9, Pearson's Chi-Square.

1. A die was tossed 300 times and the uppermost face was recorded. The data are

| face      | 1  | 2  | 3  | 4  | 5  | 6  |
|-----------|----|----|----|----|----|----|
| frequency | 46 | 58 | 59 | 35 | 45 | 57 |

It is desired to test the hypothesis that the die is fair,  $H_0 : p_i = 1/6$  for i = 1, ..., 6. Compute (a) Pearson's  $\chi^2$ , (b) the Neyman  $\chi^2$ , (c) the Hellinger  $\chi^2$ , for testing  $H_0$  with this data, and compare with the 5% cut-off point of the appropriate distribution.

2. Find the transformed  $\chi^2$  where each cell is transformed by the reciprocal transformation. What is the modified transformed  $\chi^2$  for this transformation?

3. (a) One measure of the homogeneity of a multinomial population with k cells and probabilities,  $\boldsymbol{p} = (p_1, \ldots, p_k)$ , is the sum of the squares of the probabilities,  $S(\boldsymbol{p}) = \sum_{i=1}^{k} p_i^2$ . Note that  $1/k \leq S(\boldsymbol{p}) \leq 1$ , with higher values indicating greater heterogeneity. Given a sample of size n from this population (with replacement), we may estimate  $S(\boldsymbol{p})$  by  $S(\hat{\boldsymbol{p}})$ , where  $\hat{\boldsymbol{p}} = (\hat{p}_1, \ldots, \hat{p}_k)$  and  $\hat{p}_i$  is the proportion of the observations that fall in cell i. What is the asymptotic distribution of  $S(\hat{\boldsymbol{p}})$ ?

(b) Another measure of homogeneity often used is Shannon entropy, defined as  $H(\mathbf{p}) = -\sum_{i=1}^{k} p_i \log p_i$ , with  $0 \le H(\mathbf{p}) \le \log k$ , and with higher values indicating greater homogeneity. What is the asymptotic distribution of  $H(\hat{\mathbf{p}})$ ?

4. Consider a multinomial experiment with 4 cells, sample size n, and vector of probabilities  $\mathbf{p} = (p_1, p_2, p_3, p_4)$ . Let  $n_i$  denote the number of observations falling in cell i for  $i = 1, \ldots, 4$ , where  $n_1 + n_2 + n_3 + n_4 = n$ . Let  $X_n = n_1 + n_2$  and  $Y_n = n_1 + n_3$ . Find the joint asymptotic distribution of  $X_n$  and  $Y_n$ .

5. Modification of Pearson's chi-square,  $\chi_P^2 = (1/n) \sum_{1}^{c} (\hat{p}_i - p_i)^2 / p_i$ , may be achieved by replacing the  $p_i$  in the denominator by any estimate,  $\tilde{p}_i = f(p_i, \hat{p}_i)$ , such  $\tilde{p}_i \xrightarrow{P} p_i$  for all i as  $n \to \infty$ . The resulting modified chisquare,  $\chi_M^2 = (1/n) \sum_{1}^{c} (\hat{p}_i - p_i)^2 / f(p_i, \tilde{p}_i)$ , still has an asymptotic  $\chi_{n-1}^2$  distribution. Show that Hellinger's  $\chi^2$ , in addition to being a transformed  $\chi^2$ , is also a modified  $\chi^2$ . In particular, find  $f(p_i, \hat{p}_i)$  such that  $f(p_i, \hat{p}_i) \xrightarrow{P} p_i$ and  $\chi_M^2 = \chi_H^2$ .

6. Let X and Y be 2-valued random variables taking on values 1 and 2, and let  $p_{ij} = P(X = i, Y = j)$  for i = 1, 2 and j = 1, 2, where  $\sum_i \sum_j p_{ij} = 1$ . The parameter  $\theta = \frac{p_{11}p_{22}}{p_{12}p_{21}}$  is called the odds-ratio and may be used as a measure of association between X and Y. X and Y are independent if  $\theta = 1$  (Show this), positively associated if  $\theta > 1$ , and negatively associated if  $\theta < 1$ .

Suppose a sample of size n is taken from the distribution of (X, Y), with  $n_{ij}$  observations falling in "cell" (i, j), where  $\sum_i \sum_j n_{ij} = n$ .

(a) The sample estimate of  $\theta$  is  $\hat{\theta}_n = \frac{\hat{p}_{11}\hat{p}_{22}}{\hat{p}_{12}\hat{p}_{21}}$ , where  $\hat{p}_{ij} = n_{ij}/n$ . What is the asymptotic distribution of  $\hat{\theta}_n$  as  $n \to \infty$ ? (b) Let  $\vartheta = \log(\theta)$  be the log odds-ratio. Find the asymptotic distribution of  $\hat{\vartheta}_n =$ 

 $\log(\hat{\theta}_n)$  as an estimate of  $\vartheta$ .