Large Sample Theory

Ferguson

Exercises, Section 7, Functions of the Sample Moments.

1. Let X_{1}, X_{2}, \ldots be i.i.d. random variables with mean μ and variance σ^{2}. Find the asymptotic distribution of $R_{n}=\sum_{i=1}^{n} X_{2 i-1} / \sum_{i=1}^{n} X_{2 i}$ for (a) $\mu \neq 0$, and for (b) $\mu=0$.
2. Professor Bliss has at hand a large sample X_{1}, \ldots, X_{n}, from the double exponential distribution with density $f(x)=(1 /(2 \tau)) e^{-|x-\mu| / \tau}$, having mean μ and mean deviation $\mathrm{E}|X-\mu|=\tau$. He knows enough to estimate μ by the sample median, m_{n}, and he knows he should use ($1 / n$) $\sum\left|X_{i}-m_{n}\right|$ to estimate the mean deviation (these are the MLE's), or $(1 / n) \sum\left(X_{i}-m_{n}\right)^{2}$ to estimate the variance, $\sigma^{2}=2 \tau^{2}$, but he doesn't quite know what the sampling distribution might be. He decides instead to use the sample variance, $(1 / n) \sum\left(X_{i}-\bar{X}_{n}\right)^{2}$, to estimate σ^{2}, and to get confidence intervals for σ^{2} using the chisquare tables. How well is Professor Bliss doing in his confidence intervals for σ^{2} ? (You may assume n large.)
3. Let X have the Poisson distribution, $\mathcal{P}(\lambda)$. We know that $(X-\lambda) / \sqrt{\lambda} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$ as $\lambda \rightarrow \infty$, and we say $X \sim \mathcal{N}(\lambda, \lambda)$ for large λ.
(a) Show $\log (X) \sim \mathcal{N}\left(\log (\lambda), \lambda^{-1}\right)$ for large λ.
(b) Show $X^{2} \sim \mathcal{N}\left(\lambda^{2}, 4 \lambda^{3}\right)$ for large λ.
(c) Is it true that $e^{X} \sim \mathcal{N}\left(e^{\lambda}\right.$, something) for large λ ?
4. Let X_{1}, \ldots, X_{n} be a sample from the geometric distribution with mass function, $\mathrm{P}(X=x)=(1-\theta) \theta^{x}$ for $x=0,1, \ldots$, where $0<\theta<1$ is a success probability. Let $S_{n}=\sum_{1}^{n} X_{i}$ denote the total number of successes, and $T_{n}=\sum_{1}^{n} \mathrm{I}\left(X_{i}>0\right)$ denote the number of trials that had at least one success.
(a) Find the joint asymptotic distribution of $\left(S_{n}, T_{n}\right)$.
(b) Find the joint asymptotic distribution of $\left(U_{n}, V_{n}\right)$, where $U_{n}=S_{n} / T_{n}$ and $V_{n}=$ $n-T_{n}$.
5. To estimate a parameter, θ^{2}, you are given the choice of the following two possibilities: (1) the estimate \bar{X}_{n}^{2}, based on a sample, X_{1}, \ldots, X_{n} from the gamma distribution, $\mathcal{G}(\theta, 1)$, and (2) the estimate \bar{Y}_{n}, based on a sample, Y_{1}, \ldots, Y_{n} from the gamma distribution, $\mathcal{G}\left(\theta^{2}, 1\right)$. If n is large, which would you choose? (The answer depends on θ.)
6. If $\sqrt{n}\left(\bar{X}_{n}-\theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \sigma^{2}\right)$ as $n \rightarrow \infty$, what is the asymptotic distribution of $\left|\bar{X}_{n}\right|$? (Consider the cases $\theta=0$ and $\theta \neq 0$ separately.)
7. Let X_{1}, \ldots, X_{n} be a sample from $\mathcal{N}\left(\theta, \sigma^{2}\right)$ with σ^{2} known. For a fixed number a, let $p=\mathrm{P}\left(X_{i}>a\right)=1-\Phi((a-\theta) / \sigma)=\Phi((\theta-a) / \sigma)$. The maximum likelihood estimate of p is therefore $\hat{p}_{n}=\Phi\left(\left(\bar{X}_{n}-a\right) / \sigma\right)$. Find the asymptotic distribution of $\sqrt{n}\left(\hat{p}_{n}-p\right)$.
8. Let X_{1}, \ldots, X_{n} be i.i.d. with mean zero and positive finite sixth moment. Let $\mu_{k}=\mathrm{E}\left(X^{k}\right)$ denote the population moments and $m_{k}=(1 / n) \sum_{1}^{n} X_{i}^{k}$ denote the sample moments. Then m_{2} is a reasonable estimate of μ_{2} and has asymptotic distribution

$$
\sqrt{n}\left(m_{2}-\mu_{2}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \mu_{4}-\mu_{2}^{2}\right) .
$$

Show that the estimate of μ_{2} given by

$$
\hat{\sigma}^{2}=m_{2}-\frac{m_{1} m_{3}}{m_{2}}
$$

has an asymptotic normal distribution,

$$
\sqrt{n}\left(\hat{\sigma}^{2}-\mu_{2}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \tau^{2}\right) .
$$

with some asymptotic variance τ^{2}. Find τ^{2} and show that $\tau^{2} \leq \mu_{4}-\mu_{2}^{2}$, with equality if and only if $\mu_{3}=0$. Note that for two-point distributions, $\tau^{2}=0$.
9. (a) Suppose $\sqrt{n}\left(Z_{n}-\sigma^{2}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0,2 \sigma^{4}\right)$, where $\sigma>0$. Find the asymptotic distribution of $\sqrt{n}\left(\sqrt{Z_{n}}-\sigma\right)$.
(b) Find the approximation given by the second order Taylor expansion to the asymptotic distribution of $\sqrt{n}\left(\sqrt{Z_{n}}-\sigma\right)$.
(c) Take $n=10, \sigma=1$ and suppose the original distribution of $\sqrt{n}\left(Z_{n}-\sigma^{2}\right)$ is exactly normal. Find the exact probability, $\mathrm{P}\left(\sqrt{n}\left(\sqrt{Z_{n}}-\sigma\right)>.5\right)$, and compare it to the approximations given by (a) and (b).
(d) Suppose the distribution of Z_{n} is not normal but instead that $n Z_{n} / \sigma^{2}$ is exactly χ_{n}^{2}, as it would be if Z_{n} were the sample variance of a sample of size $n+1$ from a normal distribution with variance σ^{2} (i.e. $\left.Z_{n}=(1 / n) \sum_{1}^{n+1}\left(X_{i}-\bar{X}_{n+1}\right)^{2}=s_{x}^{2}\right)$. Now find the exact probability $\mathrm{P}\left(\sqrt{n}\left(\sqrt{Z_{n}}-\sigma\right)>.5\right)$ for $n=10$ and $\sigma=1$, and compare it to the approximations given by (a) using the Edgeworth expansions. (Note that Table 1 has fortuitously been constructed for the normalized χ_{10}^{2} distribution.)
10. For convenience, Cramér's Theorem has been stated assuming $g^{\prime}(x)$ is continuous in a neighborhood of μ. It also holds under the weaker assumption that $g^{\prime}(x)$ exists at μ in the sense that $\frac{g(x)-g(\mu)}{x-\mu} \rightarrow g^{\prime}(\mu)$ as $x \rightarrow \mu, x \neq \mu$. Show this in one dimension:

Theorem. Let $g(x)$ be defined in a neighborhood of μ and assume that $g^{\prime}(x)$ exists at μ. If $b_{n}\left(X_{n}-\mu\right) \xrightarrow{\mathcal{L}} X$, where b_{n} is a sequence of numbers tending to infinity. Then $b_{n}\left(g\left(X_{n}\right)-g(\mu)\right) \xrightarrow{\mathcal{L}} g^{\prime}(\mu) X$.

