
Large Sample Theory
Ferguson

Exercises, Section 7, Functions of the Sample Moments.

1. Let X1,X2, . . . be i.i.d. random variables with mean µ and variance σ2. Find the
asymptotic distribution of Rn =

∑n
i=1 X2i−1/

∑n
i=1 X2i for (a) µ �= 0, and for (b) µ = 0.

2. Professor Bliss has at hand a large sample X1, . . . ,Xn, from the double exponential
distribution with density f(x) = (1/(2τ ))e−|x−µ|/τ , having mean µ and mean deviation
E|X − µ| = τ . He knows enough to estimate µ by the sample median, mn, and he knows
he should use (1/n)

∑
|Xi − mn| to estimate the mean deviation (these are the MLE’s),

or (1/n)
∑

(Xi − mn)2 to estimate the variance, σ2 = 2τ 2, but he doesn’t quite know
what the sampling distribution might be. He decides instead to use the sample variance,
(1/n)

∑
(Xi − Xn)2, to estimate σ2, and to get confidence intervals for σ2 using the chi-

square tables. How well is Professor Bliss doing in his confidence intervals for σ2? (You
may assume n large.)

3. Let X have the Poisson distribution, P(λ). We know that (X −λ)/
√

λ
L−→ N (0, 1)

as λ → ∞, and we say X ∼ N (λ, λ) for large λ.
(a) Show log(X) ∼ N (log(λ), λ−1) for large λ.
(b) Show X2 ∼ N (λ2, 4λ3) for large λ.
(c) Is it true that eX ∼ N (eλ, something) for large λ?

4. Let X1, . . . ,Xn be a sample from the geometric distribution with mass function,
P(X = x) = (1 − θ)θx for x = 0, 1, . . ., where 0 < θ < 1 is a success probability. Let
Sn =

∑n
1 Xi denote the total number of successes, and Tn =

∑n
1 I(Xi > 0) denote the

number of trials that had at least one success.
(a) Find the joint asymptotic distribution of (Sn, Tn).
(b) Find the joint asymptotic distribution of (Un, Vn), where Un = Sn/Tn and Vn =

n − Tn.

5. To estimate a parameter, θ2, you are given the choice of the following two possibil-
ities: (1) the estimate X

2
n, based on a sample, X1, . . . ,Xn from the gamma distribution,

G(θ, 1), and (2) the estimate Y n, based on a sample, Y1, . . . , Yn from the gamma distribu-
tion, G(θ2, 1). If n is large, which would you choose? (The answer depends on θ.)

6. If
√

n(Xn − θ) L−→ N (0, σ2) as n → ∞, what is the asymptotic distribution of
|Xn|? (Consider the cases θ = 0 and θ �= 0 separately.)

7. Let X1, . . . ,Xn be a sample from N (θ, σ2) with σ2 known. For a fixed number a,
let p = P(Xi > a) = 1 − Φ((a − θ)/σ) = Φ((θ − a)/σ). The maximum likelihood estimate
of p is therefore p̂n = Φ((Xn − a)/σ). Find the asymptotic distribution of

√
n(p̂n − p).

8. Let X1, . . . ,Xn be i.i.d. with mean zero and positive finite sixth moment. Let
µk = E(Xk) denote the population moments and mk = (1/n)

∑n
1 Xk

i denote the sample
moments. Then m2 is a reasonable estimate of µ2 and has asymptotic distribution

√
n(m2 − µ2)

L−→ N (0, µ4 − µ2
2).



Show that the estimate of µ2 given by

σ̂2 = m2 −
m1m3

m2

has an asymptotic normal distribution,

√
n(σ̂2 − µ2)

L−→ N (0, τ 2).

with some asymptotic variance τ 2. Find τ 2 and show that τ 2 ≤ µ4 − µ2
2, with equality if

and only if µ3 = 0. Note that for two-point distributions, τ 2 = 0.

9. (a) Suppose
√

n(Zn − σ2) L−→ N (0, 2σ4), where σ > 0. Find the asymptotic
distribution of

√
n(
√

Zn − σ).
(b) Find the approximation given by the second order Taylor expansion to the asymp-

totic distribution of
√

n(
√

Zn − σ).
(c) Take n = 10, σ = 1 and suppose the original distribution of

√
n(Zn − σ2) is

exactly normal. Find the exact probability, P(
√

n(
√

Zn − σ) > .5), and compare it to the
approximations given by (a) and (b).

(d) Suppose the distribution of Zn is not normal but instead that nZn/σ2 is exactly
χ2

n, as it would be if Zn were the sample variance of a sample of size n + 1 from a normal
distribution with variance σ2 (i.e. Zn = (1/n)

∑n+1
1 (Xi − Xn+1)2 = s2

x). Now find the
exact probability P(

√
n(
√

Zn − σ) > .5) for n = 10 and σ = 1, and compare it to the
approximations given by (a) using the Edgeworth expansions. (Note that Table 1 has
fortuitously been constructed for the normalized χ2

10 distribution.)

10. For convenience, Cramér’s Theorem has been stated assuming g′(x) is continuous
in a neighborhood of µ. It also holds under the weaker assumption that g′(x) exists at µ

in the sense that
g(x) − g(µ)

x − µ
→ g′(µ) as x → µ, x �= µ. Show this in one dimension:

Theorem. Let g(x) be defined in a neighborhood of µ and assume that g′(x) exists at

µ. If bn(Xn − µ) L−→ X, where bn is a sequence of numbers tending to infinity. Then

bn(g(Xn) − g(µ)) L−→ g′(µ)X.


