Large Sample Theory

Ferguson

Exercises, Section 6, Slutsky Theorems.

1. (G. Blom) An urn contains one white and one black ball. Draw a ball at random. With probability $1 / 2$, return it to the urn; otherwise (again with probability $1 / 2$) put a ball of the opposite color in the urn. Perform n such drawings in succession. Find the limiting distribution of $\left(X_{n}-\mathrm{E} X_{n}\right) / \sqrt{n}$, where X_{n} is the number of white balls appearing in the n draws.
2. Let X_{1}, X_{2}, \ldots be i.i.d. double exponential (Laplace) random variables with density, $f(x)=(2 \tau)^{-1} \exp \{-|x| / \tau\}$, where τ is a positive parameter that represents the mean deviation, $\tau=\mathrm{E}|X|$. Let $\bar{X}_{n}=n^{-1} \sum_{1}^{n} X_{i}$ and $\bar{Y}_{n}=n^{-1} \sum_{1}^{n}\left|X_{i}\right|$.
(a) Find the joint asymptotic distribution of \bar{X}_{n} and \bar{Y}_{n}.
(b) Find the asymptotic distribution of $\left(\bar{Y}_{n}-\tau\right) / \bar{X}_{n}$.
3. Suppose

$$
\sqrt{n}\left(\left(\begin{array}{c}
X_{n} \\
Y_{n} \\
Z_{n}
\end{array}\right)-\left(\begin{array}{c}
\mu_{x} \\
\mu_{y} \\
\mu_{z}
\end{array}\right)\right) \xrightarrow{\mathcal{L}}\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right) \in \mathcal{N}\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{ccc}
\sigma_{x}^{2} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{x y} & \sigma_{y}^{2} & \sigma_{y z} \\
\sigma_{x z} & \sigma_{y z} & \sigma_{z}^{2}
\end{array}\right)\right)
$$

Show using Slutsky's Theorem that

$$
\sqrt{n}\left(X_{n}+Y_{n} Z_{n}-\mu_{x}-\mu_{y} \mu_{z}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \sigma^{2}\right)
$$

for some σ^{2}, and find σ^{2}.
4. Suppose X_{1}, \ldots, X_{n} is a sample from the uniform distribution on the interval $(0, \theta)$, $\mathcal{U}(0, \theta)$. The maximum likelihood estimate of θ is M_{n}, the maximum of the sample. In Chapter 14 , we will see that $n\left(\theta-M_{n}\right) \xrightarrow{\mathcal{L}} Z$, where Z has the exponential distribution, $\mathcal{G}(1, \theta)$. As an estimate of θ, M_{n} might not be so good since $M_{n}<\theta$ with probability 1 , but we might use $((n+c) / n) M_{n}$ for some positive number c.
(a) What is the asymptotic distribution of $((n+c) / n) M_{n}$?
(b) What value of c should be used if we measure the accuracy of the estimate by squared error loss?
(c) What value of c should be used if we measure the accuracy of the estimate by absolute error loss?
5. Suppose X_{n} has a binomial distribution with sample size, n, and probability of success, p. Let $Y_{n}=\max \left\{\frac{X_{n}}{n}, 1-\frac{X_{n}}{n}\right\}$. What is the asymptotic distribution of Y_{n},
(a) when $p \neq 1 / 2$?
(b) when $p=1 / 2$?
6. We say a sequence of random variables, X_{n}, is tight or bounded in probability, if for every $\epsilon>0$, there exists a number M such that for all $\left.n, \mathrm{P}\left(\left|X_{n}\right|>M\right)<\epsilon\right)$. Show that if X_{n} is tight and $Y_{n} \xrightarrow{\mathrm{P}} 0$, then $X_{n} Y_{n} \xrightarrow{\mathrm{P}} 0$.

