Large Sample Theory Ferguson

Exercises, Section 3, Convergence in Law.

1. Prove that $X_n \xrightarrow{\mathcal{L}} X$ if, and only if, $Eg(X_n) \to Eg(X)$ for all bounded differentiable functions g.

2. (a) Show that the characteristic function of the $\mathcal{N}(0,1)$ distribution is $\varphi(t) = e^{-t^2/2}$.

(b) Show that the characteristic function of the $\mathcal{P}(\lambda)$ distribution is $\varphi(t) = e^{-\lambda(1-e^{it})}$.

(c) Show for the characteristic function, $\varphi_X(t)$, of an arbitrary random variable X, that $\varphi_{a+bX}(t) = e^{ita}\varphi_X(tb)$.

(d) Let X be $\mathcal{P}(\lambda)$, and let $Y = (X - \lambda)/\sqrt{\lambda}$. Show that $\varphi_Y(t) \to e^{-t^2/2}$ as $\lambda \to \infty$.

(e) What do you conclude from (d)?

3. For $n = 1, 2, ..., let X_n$ be a geometric random variable on the non-negative integers, with $P(X_n = 0) = \lambda/n$ for some $\lambda > 0$.

(a) Find the characteristic function of X_n .

(b) Use the method of characteristic functions to show that X_n/n converges in law to an exponential distribution.

4. Let X be a random variable with negative binomial distribution, $P(X = x) = \binom{r+x-1}{x}(1-p)^r p^x$, x = 0, 1, 2, ..., for some 0 and <math>r > 0. Then X represents the number of successes before the *r*th failure in a sequence of Bernoulli trials.

(a) Show that the characteristic function of X is $\phi(t) = (1-p)^r / (1-pe^{it})^r$.

(b) Using characteristic functions, find the limiting distribution of X as $r \to \infty$ and $p \to 0$ in such a way that $rp \to \lambda$ for some positive finite number λ .

5. (a) Find the characteristic function of the gamma distribution, $\mathcal{G}(\alpha, \beta)$, whose density is

$$f(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}e^{-x/\beta}x^{\alpha-1}$$
 for $x > 0$.

(b) Let X_n have the gamma distribution $\mathcal{G}(n^2, 1/n)$. Using characteristic functions, show that $X_n - n \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$.