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Mason’s 1972 Conjecture: From Wagner’s paper: The se-

quence

(Ik : 0 ≤ k ≤ r)

of numbers of independent k-sets of an m-element rank r ma-

troid is ultra log concave, in the sense that

I2
k

(

m
k

)2 ≥ Ik−1
(

m
k−1

)2

Ik+1
(

m
k+1

)2 .



A Primer on Positive Dependence

Definitions: For a probability measure µ on {0, 1}n,

(a) (Positive) lattice condition (PLC):

µ(η ∧ ζ)µ(η ∨ ζ) ≥ µ(η)µ(ζ).

(b) Association: For all ↑ F, G,

∫

FGdµ ≥
∫

Fdµ

∫

Gdµ.

FKG Theorem. PLC ⇒ association.

Harris’ Theorem. For any attractive spin system on {0, 1}n,

if the initial distribution is associated, then so is the distribu-

tion at later times.

Corollary. The upper invariant measure of the contact pro-

cess is associated.



On to Negative Dependence

Definitions: For a probability measure µ on {0, 1}n,

(a) Negative lattice condition (NLC):

µ(η ∧ ζ)µ(η ∨ ζ) ≤ µ(η)µ(ζ).

(b) Negative association (NA): For all ↑ F, G depending

on disjoint sets of coordinates

∫

FGdµ ≤
∫

Fdµ

∫

Gdµ.

Main problems:

(a) NLC does not imply NA.

(b) The symmetric exclusion process does not preserve NA.

Previously known negative correlation result for the symmet-

ric exclusion process. Andjel (1988) proved for A ∩ B = ∅,

P η(ηt ≡ 1 on A ∪ B) ≤ P η(ηt ≡ 1 on A)P η(ηt ≡ 1 on B).

The same approach does not give

P η(ηt ≡ 1 on A, ηt ≡ 0 on B) ≥

P η(ηt ≡ 1 on A)P η(ηt ≡ 0 on B).



Connection to Polynomials

The generating polynomial of µ is

f(z1, ..., zn) = f(z) = Eµzη = Eµ
n

∏

j=1

z
η(j)
j .

Definition. µ is (a) strong Rayleigh, (b) Rayleigh, or (c)

weak Rayleigh if for j 6= k,

(*)
∂f

∂zj
(z)

∂f

∂zk
(z) ≥ f(z)

∂2f

∂zj∂zk
(z)

for all (a) zj ∈ (−∞,∞), (b) zj ≥ 0, or (c) zj = 0, 1,∞.

Note: If zj ≡ 1, then (*) says Eµη(j)η(k) ≤ Eµη(j)Eµη(k).

Glossary

Pemantle (2000) used the following terminology and notation:

1. h-NLC: hereditary NLC, i.e., all projections are NLC.

2. h-NLC+: h-NLC after application of external fields.

3. CNA: NA after conditioning on some coordinates.

4. CNA+: CNA after application of external fields.

Note: Weak Rayleigh = h-NLC, and Rayleigh = h-NLC+.

There is no probabilistic interpretation of strong Rayleigh.

5. ULC: µ{η :
∑

j η(j) = k}/
(

n
k

)

is logconcave. This is

equivalent to symmetrization of µ is NLC.



Some results from Pemantle (2000):

CNA+ =⇒ Rayleigh (= h-NLC+)

⇓ ⇓

CNA =⇒ weak Rayleigh (=h-NLC)

⇓ ⇓

NA NLC

and the top four properties and ULC are equivalent for ex-

changeable µ.

Pemantle’s conjectures: (a) The horizontal implications

are equivalences. (b) Any of the top four properties implies

ULC.

Wagner’s “big” conjecture: Rayleigh =⇒ ULC. (This

would imply a conjecture due to Mason (1972) for a large

class of matroids.)

Some new results:

(a) None of the above six properties implies ULC.

(b) Strong Rayleigh implies NA and ULC.

(c) If the initial distribution of a symmetric exclusion pro-

cess is strong Rayleigh, then so is the distribution at later

times.

(d) Statement (c) is false for the Rayleigh property.

(e) The horizontal implications are equivalences for “al-

most” exchangeable µ.



Remarks on the Counterexample(s)

1. Our original example is on n = 20 sites, and is a bit

hard to describe.

2. Later, Kahn and Neiman gave simpler examples with

n = 2k, β ∈ (0, 1):

µ(η) ∼



















1 if |η| = k − 1, η(1) = 1 or |η| = k + 1, η(1) = 0,

β if |η| = k,

β2 if |η| = k − 1, η(1) = 0 or |η| = k + 1, η(1) = 1,

0 otherwise.

Then

(a) µ is CNA+ iff β ≥ 1√
2
,

and

(b) µ is ULC iff β ≥ 1 − 2
k+1 .

This gives a counterexample for n = 12.

3. Both examples are almost exchangeable.



Examples

(a) Lyons (2003) defined µ to be determinantal if there

is a matrix M so that

µ{η ≡ 1 on A} = det(submatrix of M determined by A).

He proved that if M is a positive contraction, then µ is CNA+,

and hence Rayleigh. In fact, it is strong Rayleigh.

(b) The uniform spanning tree measure is strong Rayleigh.

(c) The random cluster measure on a graph G = (V, E) has

µ(η) ∼
(

∏

j∈E

p
η(j)
j (1 − pj)

1−η(j)

)

qC(η),

where C(η) = the number of components in the subgraph

determined by η.

(i) If q ≥ 1, PLC is satisfied, and therefore µ is associated.

(ii) If q < 1, NLC is satisfied but other properties are conjec-

tural. If G = K3,

∂f

∂z1
(z)

∂f

∂z2
(z) − f(z)

∂2f

∂z1∂z2
(z) = q2(1 − q)z3(q + z3),

so µ is Rayleigh but not strong Rayleigh. The model is Rayleigh

for graphs with five or fewer vertices.



Why is strong Rayleigh better than Rayleigh?

Theorem (Brändén). The probability measure µ is strong

Rayleigh iff f(z1, ..., zn) 6= 0 for all (complex) z1, ..., zn with

strictly positive imaginary part. (I.e., f is stable.)

Hint of proof. Write zk = xk + iyk. Solve

f(z) = 0 and y3 = 0, ..., yn = 0

for y1, y2. Result:

y1f1(x) = −y2f2(x) and y1y2f1,2(x) = f(x).

(a) y1, y2 > 0 ⇒ f1(x)f2(x) < 0, f(x)f1,2(x) > 0 ⇒ not

strong Rayleigh.

(b) Not strong Rayleigh ⇒ f1(x)f2(x)−f(x)f1,2(x) < 0 for

some x3, ..., xn (it does not depend on x1, x2). Choose x1, x2

so that f1(x)f2(x) < 0, f(x)f1,2(x) > 0. Then y1y2 > 0, and

can take y1, y2 > 0.

Theorem. Strong Rayleigh ⇒ NA.

Main elements of proof. (a) Symmetric homogenization.

(b) Feder-Mihail proof of NA in the context of “balanced

matroids” – e.g., uniform spanning tree measure.



.

Theorem. Strong Rayleigh ⇒ ULC.

Proof. h(z) = f(z, z, ..., z) = EµzN , where N =
∑

k η(k), has

only real zeros. This implies ULC by the Newton inequalities.

Theorem. If µ is strong Rayleigh, then so is θµ + (1− θ)τµ,

where τµ is obtained from µ by permuting two coordinates (say

1,2).

Hint of proof. Let

g(z) = θf(z) + (1 − θ)f(τz)

be the generating polynomial of the new measure. Need to

show that g(z) 6= 0 if zk has positive imaginary part for each

k. Fix z3, ..., zn in the upper half plane. Look at the transfor-

mation Tθ given by

Tθh(z1, z2) = θh(z1, z2) + (1 − θ)h(z2, z1).

Need: h (complex) stable implies Tθh (complex) stable.

Now use: Suppose h(z, w) = a + bz + cw + dzw, where

a, b, c, d are complex, and not all zero. Then h is stable if and

only if

ℜ(bc−ad) ≥ |bc−ad|, ℑ(ab) ≥ 0, ℑ(ac) ≥ 0, ℑ(bd) ≥ 0, ℑ(cd) ≥ 0.



The Symmetric Exclusion Process on S

Theorem. If µ is strong Rayleigh, then µT (t), the distribu-

tion at time t is also strong Rayleigh.

Proof. This follows from the previous result if the transition

rate is zero except for one pair of sites. In general, use the

Trotter product formula: If Tk(t) has generator Lk, then the

semigroup with generator L1 + L2 is given by

T (t) = lim
n→∞

[

T1(t/n)T2(t/n)

]n

.

Application to stationary distributions. Let qj,k = qk,j

be the rate at which a particle goes from j to an unoccupied

site k. Put

H =

{

α : S → [0, 1],
∑

k

qj,k[α(k) − α(j)] = 0

}

.

For α ∈ H, let να be the product measure with

να{η : η(j) = 1} = α(j).

Then µα = limt→∞ ναT (t) is strong Rayleigh. This is the

most general extremal stationary distribution for the process.



Limit Theorems

Proposition. If {η(k)} is strong Rayleigh, then there exist

independent {ζ(j)} so that
∑

η(k) and
∑

ζ(j) have the same

distribution.

Proof. Put N =
∑

k η(k). Then f(z, z, ..., z) = EµzN 6= 0 if z

has positive imaginary part. Therefore,

f(z, z, ..., z) =
∏

i

[piz + (1 − pi)] = EzM , M =
∑

j

ζ(j).

Theorem. Suppose the Bernoulli random variables {ηn(x)}
are strong Rayleigh for each n.

(a) If limn→∞
∑

x Eηn(x) = λ, limn→∞
∑

x[Eηn(x)]2 = 0,

and

lim
n→∞

∑

x 6=y

Cov(ηn(x), ηn(y)) = 0,

then
∑

x

ηn(x) ⇒ Poisson(λ).

(b) If limn→∞ V ar(
∑

x ηn(x)) = ∞, then

∑

x ηn(x) − E
∑

x ηn(x)
√

V ar(
∑

x ηn(x))
⇒ N(0, 1).



Applications

1. Take S = Z1, qj,k = p(j − k). Let

η0(k) =

{

1 if k ≤ 0,

0 if k > 0,

and Wt =
∑

x>0 ηt(x).

Theorem. Suppose σ2 =
∑

n n2p(n) < ∞. Then

Wt − EWt

[V ar(Wt)]1/2
⇒ N(0, 1),

lim
t→∞

EWt√
t

=
σ√
2π

, and
V ar(Wt)

t1/2

is asymptotically between two positive constants.

2. Suppose S is the the binary tree, and qj,k = 1
3 if d(j, k) = 1.

Theorem. For a natural choice of α, with respect to µα,

∑

k∈L:l(k)=n

η(k) ⇒ Poisson (1/3), and

σ−1
n

[

∑

k∈L:l(k)<n

η(k) − n

3

]

⇒ N(0, 1)

with 23
189 ≤ σ2

n/n ≤ 1
3 asymptotically.


