Finitely Dependent Coloring
 on \mathbb{Z} and other Graphs

Thomas M. Liggett
Mathematics Department, UCLA (Joint work with A. E. Holroyd, Microsoft Research)

Schramm's Question: For which values of k, q does there exist a stationary k-dependent q-coloring of \mathbb{Z} ?

This means: $X_{i} \in[q]=\{1, \ldots, q\}$ such that
(a) $\left(X_{i}\right)={ }^{d}\left(X_{i+1}\right)$,
(b) $X_{i} \neq X_{i+1}$,
(c) $\left(\ldots, X_{i-2}, X_{i-1}\right)$ and $\left(X_{i+k}, X_{i+k+1}, \ldots\right)$ are independent.

In 2008, Schramm knew:
(a) Impossible for $q=2$, any k, since a stationary coloring must be

$$
\begin{cases}\cdots 1212 \cdots & \text { with probability } \frac{1}{2} \\ \cdots 2121 \cdots & \text { with probability } \frac{1}{2}\end{cases}
$$

(b) Impossible for $q=3, k=1$.
(c) Cannot be a block factor, i.e., $X_{i}=f\left(U_{i}, U_{i+1}, \ldots, U_{i+r-1}\right)$, where U_{i} are i.i.d.
(d) Cannot be a Markov chain, or a function of a finite state Markov chain.

Based on these (and other) negative results, Schramm conjectured that the answer is always No.

However,

Theorem. There exists a stationary 1 -dependent 4 -coloring of \mathbb{Z} and a stationary 2 -dependent 3 -coloring of \mathbb{Z}.

First, some of the negative results:
Proposition. There is no k-dependent q-coloring that is a Markov chain.

Proof. Suppose P is the transition matrix for the [q]-valued Markov chain X_{i}. By k-dependence, X_{i} is independent of X_{0} for $i>k$. So, $\left(X_{k+1} \mid X_{0}\right)={ }^{d}\left(X_{k+2} \mid X_{0}\right)=$ the stationary distribution. Therefore, $P^{k+1}(I-P)=0$, and the eigenvalues of P are 0 and 1 . However, since X_{i} is a coloring, the diagonal elements of P are 0 , so the trace is 0 .

Proposition. There is no 1 -dependent 3 -coloring.
Proof. Fuxi Zhang observed that if X_{i} is a 1 -dependent q-coloring, then $1_{\left\{X_{i}=1\right\}}$ is a renewal sequence, e.g.,

$$
\begin{aligned}
\frac{P(000100)}{P(1)} & =\frac{P(00-1-0)}{P(1)}=P(00) P(0), \\
\frac{P(0001)}{P(1)} \frac{P(100)}{P(1)} & =\frac{P(00-1)}{P(1)} \frac{P(1-0)}{P(1)}=P(00) P(0) .
\end{aligned}
$$

The renewal time T has probability generating function

$$
E s^{T}=\frac{p s^{2}}{1-s+p s^{2}}
$$

where $p=P\left(X_{0}=1\right)$. Singularities are at $s=(1 \pm \sqrt{1-4 p}) / 2 p$. By Pringsheim's Theorem, $p \leq \frac{1}{4}$.

First Construction ($q=4$).
Identify $\{1,2,3,4\}$ with $\{-,+\}^{2}$, and write $X=\binom{Y}{Z}$, where Y, Z are binary \pm sequences. The distribution μ of Y is 1 -dependent. There are many possible choices for μ, e.g., Bernoulli $\left(\frac{1}{2}\right)$ and $Y_{i}=\operatorname{sign}\left(U_{i}-U_{i-1}\right), \quad U_{i}$ i.i.d. $U[0,1]$.

More generally, 1 -dependent binary sequences are determined by the sequence $u_{n}=\mu(++\cdots++)$, where $n=\#+$'s, since e.g.,

$$
\mu(+-+)=u_{1}^{2}-u_{3}
$$

The sequence u_{n} must satisfy many inequalities. A large collection can be described in terms of Polya frequency sequences.

Examples of the distribution of X :

$$
\begin{gathered}
2 P\binom{+}{z}=\mu(+), \quad 2^{2} P\left(\begin{array}{ll}
+ & - \\
z_{1} & z_{2}
\end{array}\right)=\mu(+-), \\
2^{3} P\left(\begin{array}{lll}
+ & - & + \\
z_{1} & z_{2} & z_{3}
\end{array}\right)=\mu(+-+)-(-1)^{z_{1}+z_{3}} \mu(+++), \\
2^{4} P\left(\begin{array}{llll}
+ & - & + & - \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right)=\mu(+-+-) \\
-(-1)^{z_{1}+z_{3}} \mu(+++-)-(-1)^{z_{2}+z_{4}} \mu(+---), \\
2^{5} P\left(\begin{array}{llll}
+ & - & + & - \\
z_{1} & z_{2} & z_{3} & z_{4} \\
z_{5}
\end{array}\right)=\mu(+-+-+) \\
-(-1)^{z_{1}+z_{3}} \mu(+++-+)-(-1)^{z_{2}+z_{4}} \mu(+---+) \\
-(-1)^{z_{3}+z_{5}} \mu(+-+++) \\
+(-1)^{z_{1}+z_{5}}\left[1+(-1)^{z_{2}+z_{4}}\right] \mu(+++++) .
\end{gathered}
$$

The choice $Y_{i}=\operatorname{sign}\left(U_{i}-U_{i-1}\right), \quad U_{i}$ i.i.d. $U[0,1]$ is particularly nice, since for example

$$
\begin{aligned}
\mu(++-+-) & =P\left(U_{0}<U_{1}<U_{2}>U_{3}<U_{4}>U_{5}\right) \\
& =\frac{\# \text { linear extensions of } \operatorname{POS} 0<1<2>3<4>5}{\# \text { linear orders of }\{0,1, \ldots, 5\}} \\
& =\frac{\alpha(2,1,1,1)}{6!} .
\end{aligned}
$$

Edelman, Hibi and Stanley (1989) proved (a more general version of) the recursion

$$
\alpha\left(k_{1}, k_{2}, \ldots\right)=\alpha\left(k_{1}-1, k_{2}, \ldots\right)+\alpha\left(k_{1}, k_{2}-1, \ldots\right)+\cdots .
$$

For example, for the partial orders

$$
\begin{array}{cc}
0<1<2>3, & 0<1>2,
\end{array} \quad 0<1<2, ~(2)=1 . ~ \$(1,1)=2, \quad \alpha(2)=1 .
$$

The Formula.

$$
P(x)=P\binom{y}{z}=\frac{1}{2^{m}(n+1)!} \sum_{w \in D D(m-1)}(-1)^{|w|} c(w, y, z) \alpha\left(y_{w}\right),
$$

where
(a) x has length n and y has m runs.
(b) $D D(m)$ is the set of dispersed Dyck words of length m.

Examples:

$$
\begin{gathered}
\quad+-+- \text { and }++-- \text { are Dyck words; } \\
0++--00+-++-- \text { is a dispersed Dyck word. }
\end{gathered}
$$

(c) $|w|$ is the number of + 's in w and $c(w, y, z)= \pm 1$.
(d) y_{w} is obtained from y by eliminating runs in y according to w.
(e) $\alpha(y)=\# \pi \in S_{n+1}$ such that sign $\left(\pi_{i+1}-\pi_{i}\right)=y_{i}$.

Question: Why is $P(x) \geq 0$?

Second Construction ($q=4$).

Write $P(x)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$ for the above coloring. Then the the following recursion holds, with $P(\emptyset)=1$:

$$
P(x)=\frac{1}{2(n+1)} \sum_{i=1}^{n} P\left(\widehat{x}_{i}\right), \quad x \in[4]^{n}, x_{i} \neq x_{i+1} \forall 1 \leq i<n,
$$

where \widehat{x}_{i} is obtained from x by deleting x_{i}. If \widehat{x}_{i} is not a proper coloring, set $P\left(\widehat{x}_{i}\right)=0$.

Consequence: $P(x) \geq 0$ for all x.
What happens if the analogous construction is applied to other q 's?
(a) If $q=3$, the coloring is $2-$ dependent.
(b) If $q \geq 5$, the coloring is not k-dependent for any k !

Some Details.

For any q and proper x, define

$$
B(x)=\sum_{i=1}^{n} B\left(\widehat{x}_{i}\right) .
$$

Then for proper $x \in[q]^{m}, y \in[q]^{n}$,

$$
\begin{array}{rr}
\sum_{a \in[q]} B(x a y)=2\binom{m+n+2}{m+1} B(x) B(y), & q=4, \\
\sum_{a, b \in[q]} B(x a b y)=2\binom{m+n+4}{m+2} B(x) B(y), & q=3, \\
\sum_{x \in[q]^{n}}[B(1 x 2)-B(1 x 1)]=2 \prod_{k=1}^{n}[k(q-2)-2], & q \geq 2 .
\end{array}
$$

Color Symmetric Construction ($q \geq 4$).

Motivated by the second construction for $q=4$, try

$$
P(x)=\frac{1}{D(n+1)} \sum_{i=1}^{n} C(n-2 i+1) P\left(\widehat{x}_{i}\right)
$$

for $x \in[q]^{n}, x_{i} \neq x_{i+1} \forall 1 \leq i<n$. Motivated by special cases, take

$$
C(n)=T_{n}(\sqrt{q} / 2), n \geq 0 ; \quad D(n)=\sqrt{q} U_{n-1}(\sqrt{q} / 2), n \geq 1
$$

where T_{n}, U_{n} are the Chebyshev polynomials of the first and second kind:

$$
T_{n}(u)=\cosh (n t), \quad U_{n}(u)=\frac{\sinh [(n+1) t]}{\sinh (t)}, \quad u=\cosh (t)
$$

C, D extended to all n by taking C even and D odd. Note: If $q=4, C(n) \equiv 1, \quad D(n)=2 n$.

Examples:

$$
\begin{gathered}
C(0)=1, \quad C(1)=\frac{\sqrt{q}}{2}, \quad C(2)=\frac{q-2}{2}, \quad C(3)=\frac{\sqrt{q}(q-3)}{2} \\
D(0)=0, \quad D(1)=\sqrt{q}, \quad D(2)=q, \quad D(3)=\sqrt{q}(q-1)
\end{gathered}
$$

Proof of 1 -dependence relies on identities such as

$$
2 C(m) D(n)=D(m+n)+D(n-m)
$$

and

$$
C(j+k) D(k+I)=C(k) D(j+k+I)-C(I) D(j)
$$

Also,

$$
\sum_{i=1}^{n} D(n-2 i+1) P\left(\widehat{x}_{i}\right)=0
$$

Bounds on the number of colors needed.

(a) On \mathbb{Z}^{1}, need 4 and this is best possible.
(b) On \mathbb{Z}^{2}, need at least 9 and 16 suffices.
(c) $O n \mathbb{Z}^{3}$, need at least 12 and 64 suffices
(d) On the d-regular tree need at least $d e$.

Construction of a 16 -coloring on \mathbb{Z}^{2}.
On each horizontal and vertical line in \mathbb{Z}^{2}, put an independent copy of the $\mathbb{Z}^{1} 4$-coloring. The color of $(m, n) \in \mathbb{Z}^{2}$ is (a, b), where a, b are the colors it inherits from the horizontal and vertical lines through it.

Five colors do not suffice on \mathbb{Z}^{2}.
Let $p=P\left(X_{0}=1\right)$ and

$$
f(n)=P\left(\begin{array}{lllll}
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right), \quad g(n)=P\left(\begin{array}{lllll}
0 & 0 & \cdots & 0 & - \\
0 & 0 & \cdots & 0 & 0
\end{array}\right),
$$

where $n=$ the length of the strip and 0 means color other than 1 . Then

$$
f(n)=g(n)-p g(n-1), \quad g(n)=f(n-1)-p g(n-1) .
$$

Solving gives

$$
\sum_{n=0}^{\infty} g(n) s^{n}=\frac{1}{1-(1-p) s+p s^{2}}
$$

By Pringsheim's Theorem, $p \leq 3-2 \sqrt{2}=.171 \ldots$.

Other results.

Combining our 4-coloring with results in Holroyd, Schramm and Wilson, one can prove the existence of stationary k-dependent q-colorings that exclude certain other collections of patterns. (Colorings are those that exclude the pattern aa for any a.)

Some open problems.

1. Uniqueness of the 4 -coloring or symmetric q-coloring $(q \geq 5)$ on \mathbb{Z}.
2. Existence of an automorphism invariant q-coloring on \mathbb{Z}^{2}.
3. Existence of an automorphism invariant q-coloring on the d-regular tree.
4. Do these colorings have any reasonable structure?
