The Exclusion Process:
 Central Limit Theorems and Stationary Distributions

Thomas M. Liggett, UCLA June 22, 2009

The exclusion process. S is countable, and $p(x, y)$ are the transition probabilities for an irreducible discrete time Markov chain on S :

$$
p(x, y) \geq 0 \text { and } \sum_{y} p(x, y)=1
$$

The exclusion process is a continuous time Markov process η_{t} on $\{0,1\}^{S}$ in which a particle at x waits a unit exponential time, and then tries to move to y with probability $p(x, y)$. If y is vacant, it moves to y, while if y is occupied, it stays at x.

Pemantle's problem (2000). Suppose

$$
S=Z^{1} \quad \text { and } \quad p(x, x+1)=p(x, x-1)=\frac{1}{2} .
$$

At $t=0$, take

$$
\eta=\cdots 1110000 \cdots,
$$

and let

$$
N_{t}=\sum_{x>0} \eta_{t}(x)
$$

Is it true that

$$
\frac{N_{t}-E N_{t}}{\left[\operatorname{var}\left(N_{t}\right)\right]^{1 / 2}} \Rightarrow N(0,1) ?
$$

The difficulty: N_{t} is a sum of Bernoulli random variables, but they are NOT independent. In fact, they are negatively correlated. This leads to a general question: If $p(x, y)=p(y, x)$ and the initial distribution is deterministic (or a product measure), what can be said about the distribution of η_{t} ?

The generating polynomial of a probability measure μ on $\{0,1\}^{n}$ is

$$
f\left(z_{1}, \ldots, z_{n}\right)=E^{\mu} \prod_{k=1}^{n} z_{k}^{\eta(k)}
$$

μ is said to be stable if $f \neq 0$ whenever

$$
\operatorname{Im}\left(z_{k}\right)>0 \text { for } 1 \leq k \leq n .
$$

Example. If $\mu=\nu_{\alpha}$ is the product measure with marginals

$$
\nu_{\alpha}\{\eta: \eta(k)=1\}=\alpha_{k},
$$

then

$$
f\left(z_{1}, \ldots, z_{n}\right)=\prod_{k=1}^{n}\left[\alpha_{k} z_{k}+\left(1-\alpha_{k}\right)\right],
$$

so product measures are stable.

Theorem 1 For a symmetric exclusion process, if the initial distribution is stable, then so is the distribution at later times.

Theorem 2 If the distribution of

$$
\{\eta(k), 1 \leq k \leq n\}
$$

is stable, then there exist independent Bernoulli random variables

$$
\{\zeta(k), 1 \leq k \leq n\}
$$

so that

$$
\sum_{k} \eta(k) \text { and } \sum_{k} \zeta(k)
$$

have the same distribution.

To see this, note that

$$
f(z, \ldots, z)=E z^{\sum_{k} \eta(k)}=\sum_{j=0}^{n} P\left(\sum_{k} \eta(k)=j\right) z^{j}
$$

is not zero if $\operatorname{Im}(z)>0$ or if $\operatorname{Im}(z)<0$ or if $z>0$, so all roots are negative:

$$
E z^{\sum_{i} \eta(i)}=\prod_{k=1}^{n}\left[\alpha_{k} z+\left(1-\alpha_{k}\right)\right]
$$

where the roots are $-\left(1-\alpha_{k}\right) / \alpha_{k}$.

Preservation of stability by symmetric ex-

 clusion:It is enough to check it for exclusion on two sites, i.e., to check that stability is preserved by the transformation

$$
\mu \rightarrow T \mu=p \mu+(1-p) \mu_{k, l}
$$

where $\mu_{k, l}$ is obtained from μ by permuting $\eta(k)$ and $\eta(l)$.

Suppose f is stable. Need to show that

$$
T f(z) \neq 0 \text { if } \operatorname{Im}\left(z_{j}\right)>0 \text { for all } j
$$

Fix z_{j} for $j \neq k, l$. Need to show that T preserves stability of polynomials of the form

$$
h(z, w)=a+b z+c w+d z w
$$

where a, b, c, d are complex. Such an h is stable iff

$$
\begin{gathered}
\operatorname{Re}(b \bar{c}-a \bar{d}) \geq|b c-a d| \\
\operatorname{Im}(a \bar{b}) \geq 0, \operatorname{Im}(a \bar{c}) \geq 0, \operatorname{Im}(b \bar{d}) \geq 0, \operatorname{Im}(c \bar{d}) \geq 0
\end{gathered}
$$

Back to Pemantle's problem:

By the Lindeberg-Feller Theorem, it is enough to consider second moments. By duality,

$$
E N_{t}=E X_{t}^{+}
$$

and

$$
\sum_{x>0} E \eta_{t}(x)^{2}=E \min \left(X_{t}^{+}, Y_{t}^{+}\right)
$$

where X_{t} and Y_{t} are independent simple random walks on Z^{1} starting at 0 . It is harder to estimate the sum of covariances,

$$
\sum_{>0, x \neq y} \operatorname{cov}\left(\eta_{t}(x), \eta_{t}(y)\right)
$$

But this can be done, with the result that

$$
\lim _{t \rightarrow \infty} \frac{E N_{t}}{\sqrt{t}}=\frac{1}{\sqrt{2 \pi}}
$$

and

$$
0<c_{1} \leq \frac{\operatorname{var}\left(N_{t}\right)}{\sqrt{t}} \leq c_{2}<\infty
$$

It follows that the central limit theorem for N_{t} holds.

Stationary distributions. From now on, take $S=Z^{d}$ and $p(x, y)=p(y-x)$. Then the homogeneous product measures

$$
\nu_{\rho}, \quad 0 \leq \rho \leq 1
$$

are stationary. Main questions: Are there other (extremal) stationary distributions? If so, what are they?

1. No if $p(-x)=p(x)$, or if

$$
d=1 \text { and } \sum_{x} x p(x)=0,
$$

Open problem: How about $d>1$ and

$$
\sum_{x} x p(x)=0 ?
$$

2. Suppose $d=1, p(1)=p>p(-1)=q$ and $p(x)=0$ if $|x|>1$. Then the inhomogeneous product measure ν_{α} with

$$
\alpha(x)=\frac{p^{x}}{p^{x}+q^{x}}
$$

is stationary.

This measure is not extremal. To see this, let

$$
C=\bigcup_{n=-\infty}^{\infty} C_{n}
$$

where

$$
C_{n}=\left\{\eta: \sum_{x<n} \eta(x)=\sum_{x \geq n}[1-\eta(x)]<\infty\right\}
$$

Then η_{t} is an irreducible Markov chain on each C_{n}, and $\nu_{\alpha}(C)=1$. Therefore, η_{t} restricted to C_{n} is positive recurrent with unique stationary distribution $\mu_{n}(\cdot)=\nu_{\alpha}\left(\cdot \mid C_{n}\right)$. The extremal stationary distributions in this case are exactly

$$
\left\{\nu_{\rho}, 0 \leq \rho \leq 1\right\} \cup\left\{\mu_{n}, n \in Z^{1}\right\}
$$

Terminology: (i) A measure μ satisfying $\mu(C)=$ 1 is said to be blocking. (ii) If it satisfies the weaker conditions

$$
\begin{array}{r}
\lim _{x \rightarrow-\infty} \mu\{\eta: \eta(x)=1\}=0 \\
\lim _{x \rightarrow \infty} \mu\{\eta: \eta(x)=1\}=1
\end{array}
$$

it is said to be profile.
3. Suppose $d=1$ and $\sum_{x} x p(0, x)>0$. Then:
(a) The extremal stationary distributions are either (i) $\left\{\nu_{\rho}, 0 \leq \rho \leq 1\right\}$ or

$$
\begin{equation*}
\left\{\nu_{\rho}, 0 \leq \rho \leq 1\right\} \cup\left\{\mu_{n}, n \in Z^{1}\right\}, \tag{ii}
\end{equation*}
$$

where μ_{n} are profile measures, and are shifts of each other.
(b) If $p(\cdot)$ has finite range, or satisfies

$$
\sum_{x<0} x^{2} p(x)<\infty
$$

and some reasonable monotonicity conditions, then (ii) holds and μ_{n} is blocking.
(c) If $\sum_{x<0} x^{2} p(x)=\infty$, then there are no stationary blocking measures.

Open problem: In case (c) above, are there stationary profile measures?
4. Suppose $S=Z^{2}$ and

with $p_{1}>q_{1}, p_{2}>q_{2}$, and $v \in Z^{2}$.
(a) There are v-profile stationary product measures if and only if v is one of

$$
(1,0),(0,1), \text { or }\left(\log \frac{p_{1}}{q_{1}}, \log \frac{p_{2}}{q_{2}}\right) .
$$

(b) There is no v-profile stationary measure if $<m, v>\leq 0$, where $m=\left(p_{1}-q_{1}, p_{2}-q_{2}\right)$, is the mean vector.

Open problem: What if $\langle m, v\rangle\rangle 0$?

