The Exclusion Process: Central Limit Theorems and Stationary Distributions

Thomas M. Liggett, UCLA June 22, 2009

The exclusion process. S is countable, and p(x, y) are the transition probabilities for an irreducible discrete time Markov chain on S:

$$p(x,y) \ge 0$$
 and $\sum_{y} p(x,y) = 1$.

The exclusion process is a continuous time Markov process η_t on $\{0,1\}^S$ in which a particle at x waits a unit exponential time, and then tries to move to y with probability p(x,y). If yis vacant, it moves to y, while if y is occupied, it stays at x. Pemantle's problem (2000). Suppose

 $S = Z^1$ and $p(x, x + 1) = p(x, x - 1) = \frac{1}{2}$. At t = 0, take

 $\eta = \cdots 1 \ 1 \ 1 \ 0 \ 0 \ \cdots ,$

and let

$$N_t = \sum_{x>0} \eta_t(x).$$

Is it true that

$$\frac{N_t - EN_t}{[\operatorname{var}(N_t)]^{1/2}} \Rightarrow N(0, 1)?$$

The difficulty: N_t is a sum of Bernoulli random variables, but they are NOT independent. In fact, they are negatively correlated. This leads to a general question: If p(x,y) = p(y,x)and the initial distribution is deterministic (or a product measure), what can be said about the distribution of η_t ? The **generating polynomial** of a probability measure μ on $\{0,1\}^n$ is

$$f(z_1, ..., z_n) = E^{\mu} \prod_{k=1}^n z_k^{\eta(k)}.$$

 μ is said to be **stable** if $f \neq 0$ whenever

$$Im(z_k) > 0$$
 for $1 \le k \le n$.

Example. If $\mu = \nu_{\alpha}$ is the product measure with marginals

$$\nu_{\alpha}\{\eta : \eta(k) = 1\} = \alpha_k,$$

then

$$f(z_1, ..., z_n) = \prod_{k=1}^n [\alpha_k z_k + (1 - \alpha_k)],$$

so product measures are stable.

Theorem 1 For a symmetric exclusion process, if the initial distribution is stable, then so is the distribution at later times. **Theorem 2** If the distribution of

 $\{\eta(k), 1 \le k \le n\}$

is stable, then there exist independent Bernoulli random variables

$$\{\zeta(k), 1\leq k\leq n\}$$

so that

$$\sum_k \eta(k)$$
 and $\sum_k \zeta(k)$

have the same distribution.

To see this, note that

$$f(z,...,z) = Ez^{\sum_k \eta(k)} = \sum_{j=0}^n P\left(\sum_k \eta(k) = j\right) z^j$$

is not zero if Im(z) > 0 or if Im(z) < 0 or if z > 0, so all roots are negative:

$$Ez^{\sum_i \eta(i)} = \prod_{k=1}^n \left[\alpha_k z + (1 - \alpha_k) \right],$$

where the roots are $-(1 - \alpha_k)/\alpha_k$.

Preservation of stability by symmetric exclusion:

It is enough to check it for exclusion on two sites, i.e., to check that stability is preserved by the transformation

$$\mu \to T\mu = p\mu + (1-p)\mu_{k,l},$$

where $\mu_{k,l}$ is obtained from μ by permuting $\eta(k)$ and $\eta(l)$.

Suppose f is stable. Need to show that

 $Tf(z) \neq 0$ if $Im(z_j) > 0$ for all j.

Fix z_j for $j \neq k, l$. Need to show that T preserves stability of polynomials of the form

$$h(z,w) = a + bz + cw + dzw,$$

where a, b, c, d are **complex**. Such an h is stable iff

$$Re(b\overline{c}-a\overline{d}) \ge |bc-ad|,$$

 $Im(a\overline{b}) \geq 0, Im(a\overline{c}) \geq 0, Im(b\overline{d}) \geq 0, Im(c\overline{d}) \geq 0.$

Back to Pemantle's problem:

By the Lindeberg-Feller Theorem, it is enough to consider second moments. By duality,

$$EN_t = EX_t^+$$

and

$$\sum_{x>0} E\eta_t(x)^2 = E\min(X_t^+, Y_t^+),$$

where X_t and Y_t are independent simple random walks on Z^1 starting at 0. It is harder to estimate the sum of covariances,

$$\sum_{x,y>0,x\neq y} \operatorname{cov}(\eta_t(x),\eta_t(y)).$$

But this can be done, with the result that

$$\lim_{t \to \infty} \frac{EN_t}{\sqrt{t}} = \frac{1}{\sqrt{2\pi}}$$

and

$$0 < c_1 \le \frac{\operatorname{var}(N_t)}{\sqrt{t}} \le c_2 < \infty.$$

It follows that the central limit theorem for N_t holds.

Stationary distributions. From now on, take $S = Z^d$ and p(x, y) = p(y - x). Then the homogeneous product measures

$$u_{
ho}, \quad 0 \leq
ho \leq 1$$

are stationary. Main questions: Are there other (extremal) stationary distributions? If so, what are they?

1. No if p(-x) = p(x), or if d = 1 and $\sum_{x} xp(x) = 0$,

Open problem: How about d > 1 and

$$\sum_{x} xp(x) = 0?$$

2. Suppose d = 1, p(1) = p > p(-1) = q and p(x) = 0 if |x| > 1. Then the inhomogeneous product measure ν_{α} with

$$\alpha(x) = \frac{p^x}{p^x + q^x}$$

is stationary.

This measure is not extremal. To see this, let

	∞	
C =	U	$C_n,$
	$n = -\infty$	C

where

$$C_n = \left\{ \eta : \sum_{x < n} \eta(x) = \sum_{x \ge n} [1 - \eta(x)] < \infty \right\}.$$

Then η_t is an irreducible Markov chain on each C_n , and $\nu_{\alpha}(C) = 1$. Therefore, η_t restricted to C_n is positive recurrent with unique stationary distribution $\mu_n(\cdot) = \nu_{\alpha}(\cdot | C_n)$. The extremal stationary distributions in this case are exactly

$$\{\nu_{\rho}, 0 \le \rho \le 1\} \cup \{\mu_n, n \in Z^1\}.$$

Terminology: (i) A measure μ satisfying $\mu(C) =$ 1 is said to be blocking. (ii) If it satisfies the weaker conditions

$$\lim_{x \to -\infty} \mu\{\eta : \eta(x) = 1\} = 0,$$
$$\lim_{x \to \infty} \mu\{\eta : \eta(x) = 1\} = 1,$$

it is said to be profile.

3. Suppose d = 1 and $\sum_{x} xp(0, x) > 0$. Then:

(a) The extremal stationary distributions are either (i) $\{\nu_{\rho}, 0 \leq \rho \leq 1\}$ or

(ii)
$$\{\nu_{\rho}, 0 \le \rho \le 1\} \cup \{\mu_n, n \in Z^1\},\$$

where μ_n are profile measures, and are shifts of each other.

(b) If $p(\cdot)$ has finite range, or satisfies

$$\sum_{x<0} x^2 p(x) < \infty$$

and some reasonable monotonicity conditions, then (ii) holds and μ_n is blocking.

(c) If $\sum_{x<0} x^2 p(x) = \infty$, then there are no stationary blocking measures.

Open problem: In case (c) above, are there stationary profile measures?

4. Suppose $S = Z^2$ and

$$p_{2}$$

$$\uparrow$$

$$q_{1} \leftarrow x \rightarrow p_{1}$$

$$\downarrow$$

$$q_{2}$$

with $p_1 > q_1, p_2 > q_2$, and $v \in Z^2$.

(a) There are v-profile stationary **product** measures if and only if v is one of

$$(1,0), (0,1), \text{ or } \left(\log \frac{p_1}{q_1}, \log \frac{p_2}{q_2}\right).$$

(b) There is no *v*-profile stationary measure if $\langle m, v \rangle \leq 0$, where $m = (p_1 - q_1, p_2 - q_2)$, is the mean vector.

Open problem: What if $\langle m, v \rangle > 0$?