Approximating Multiples of Strong Rayleigh Random Variables

Thomas M. Liggett, UCLA
Consider a polynomial with positive coefficients

$$
f(u)=\sum_{k=0}^{n} c_{k} u^{k}, \quad c_{k}>0
$$

It is said to be Strong Rayleigh (SR) if all of its roots are real (and hence negative). A random variable X taking values $0,1, \ldots, n$ is SR if its probability generating polynomial (pgf)

$$
f(u)=E u^{X}=\sum_{k=0}^{n} P(X=k) u^{k}
$$

is $S R$.

In this case,

$$
f(u)=\prod_{k=0}^{n}\left[p_{k} u+\left(1-p_{k}\right)\right]
$$

Therefore

$$
X={ }_{d} \eta_{1}+\cdots+\eta_{n},
$$

where η_{i} are independent Bernoulli random variables with parameters p_{k}. If X_{n} is a sequence of SR random variables, this gives a triangular array

$$
\begin{aligned}
& X_{1}=\eta_{1,1} \\
& X_{2}=\eta_{2,1}+\eta_{2,2} \\
& X_{3}=\eta_{3,1}+\eta_{3,2}+\eta_{3,3}, \ldots
\end{aligned}
$$

of Bernoulli random variables with independence in each row. It follows from the Lindeberg-Feller Theorem that if $\operatorname{var}\left(X_{n}\right) \rightarrow \infty$, X_{n} satisfies the CLT.

Definition A random vector \mathbf{X} is said to be SR if its pgf $f(\mathbf{u}) \neq 0$ whenever $\operatorname{Im}\left(u_{i}\right)>0$ for all i.

Many natural distributions satisfy SR. But even if one does not know the distribution of \mathbf{X} explicitly, sometimes $S R$ can be verified indirectly.

For example, consider the exclusion process, which is a Markov process on the state space $\{0,1\}^{S}$, where S is a countable set. Let $p(x, y)$ be the transition probabilities for a Markov chain on S. Each particle has a rate 1 exponential clock. When the clock at x rings, if the there is a particle at x, it tries to move to y with probability $p(x, y)$. If y is occupied, it stays at x; otherwise it moves to y.

The process is said to be symmetric if $p(x, y)=p(y, x)$ for all x, y.

One of many questions about it is the following:
Defiinition A probability measure on $\{0,1\}^{S}$ is said to be negatively associated if $f(\eta)$ and $g(\eta)$ are negatively correlated for all increasing functions f, g that depend on disjoint sets of coordinates.

Problem Is It the case that η_{t} is negatively associated whenever η_{0} is?

Answer No, even in the symmetric case.
However, in
J. Borcea, P. Brändén and T. Liggett. Negative dependence and the geometry of polynomials. JAMS 22 (2009) 521-567,
we proved that the symmetric exclusion interacting particle system $\eta_{t} \in\{0,1\}^{S}$ satisfies the following property:

$$
\eta_{0} \quad S R \quad \Rightarrow \quad \eta_{t} \quad S R
$$

Moreover SR implies negative association.
Using this,
T. Liggett. Distributional limits for the symmetric exclusion process. Stoch. Proc. Appl. 119 (2009) 1-15
proved CLT's for the symmetric exclusion process.

In
S. Ghosh, T. Liggett and R. Pemantle. Multivariate CLT follows from strong Rayleigh property. ANALCO17 (2017) 139-147,
we raised the question of the extent to which SR implies a multivariate CLT. This is quite different from the univariate case, since the pgf no longer factors, and there is no reason to think that \mathbf{X} can be written as a sum of independent random vectors.

Using a result of Lebowitz, Pittel, Ruelle and Speer, we did prove such a result, but with the assumption $\operatorname{var}\left(\mathbf{X}_{\mathbf{n}}\right) \gg n^{\frac{1}{3}}$.

Why do we need a stronger assumption in the multivariate case?

Deducing multivariate CLT's from univariate CLT's via the Cramér-Wold device:

$$
\mathbf{X}_{n} \rightarrow_{d} \mathbf{X} \text { iff } \quad \mathbf{b} \cdot \mathbf{X}_{n} \rightarrow_{d} \mathbf{b} \cdot \mathbf{X}
$$

for every \mathbf{b}.
This is a simple consequence of the fact that distributional convergence is equivalent to convergence of the characteristic functions ($=$ Fourier transforms).

Problem: If X is SR, $b X$ is not even integer valued, much less SR. Can $b X$ be well approximated by a SR random variable?

Ghosh, Liggett and Pemantle (2017) proved that

$$
\text { if } X \text { is } S R \text {, then }\left\lfloor\frac{1}{k} X\right\rfloor \text { is } S R \text {. }
$$

However, if X is $B\left(3 n, \frac{1}{2}\right)$, then the roots z_{i} of the pgf of $\left\lfloor\frac{2}{3} X\right\rfloor$ satisfy

$$
2 \max _{i}\left[\operatorname{lm}\left(z_{i}\right)\right]^{2} \geq 9 n^{2}-9 n-1
$$

Maybe $\left\lfloor\frac{j}{k} X\right\rfloor$, should be written as a sum of independent random variables with more than 2 values....

Theorem. If X is SR , the pgf of $\left\lfloor\frac{2}{k} X\right\rfloor$ can be factored into quadratic polynomials with positive coefficients, so $\left\lfloor\frac{2}{k} X\right\rfloor$ has the same distribution as the sum of independent random variables taking the values $0,1,2$.

Definition f has property P_{j} if it can be factored into polynomials of degree at most j with positive coefficients.

$$
P_{1} \Longleftrightarrow S R \Longleftrightarrow \text { all roots real. }
$$

$P_{2} \Longleftrightarrow$ Hurwitz \Longleftrightarrow all roots have negative real part.
P_{3} is not a statement about each root. If f is P_{3} but not P_{2}, each root z with positive real part must be paired with a negative root w so that

$$
2 \operatorname{Re}(z)<-w<|z|^{2} / 2 \operatorname{Re}(z)
$$

Theorem (Hermite-Bieler) Write

$$
f(u)=\sum_{m=0}^{1} u^{m} h_{m}\left(u^{2}\right)=h_{0}\left(u^{2}\right)+u h_{1}\left(u^{2}\right)
$$

Then f is P_{2} iff the roots of h_{0}, h_{1} are negative and simple and interlace, with the largest being a root of h_{0}.

Definition f has property Q_{j} if writing

$$
f(u)=\sum_{m=0}^{j-1} u^{m} h_{m}\left(u^{j}\right)
$$

the roots of $h_{0}, h_{1}, \ldots, h_{j-1}$ are negative and simple and interlace, with the largest being a root of h_{0}.

Note that $Q_{1}=P_{1}, Q_{2}=P_{2}$. However, neither implication between Q_{3} and P_{3} is true.

Location of roots
If f is P_{3}, it has no roots in the sector

$$
\left\{z: \operatorname{Re}(z)>0,(\operatorname{Im}(z))^{2} \leq 3(\operatorname{Re}(z))^{2}\right\}
$$

If f is Q_{3}, it has no roots on

$$
\left\{z: \operatorname{Re}(z)>0,(\operatorname{Im}(z))^{2}=3(\operatorname{Re}(z))^{2}\right\}
$$

Theorem If X is SR , then $\left\lfloor\frac{j}{k} X\right\rfloor$ is Q_{j}.
Corollary If X is $S R$, then $\left\lfloor\frac{2}{k} X\right\rfloor$ is P_{2}.
Conjecture If X is SR , then $\left\lfloor\frac{3}{4} X\right\rfloor$ is P_{3}.
This is true if $X \leq 6$. If X is $B(40, p)$ with $p=\frac{1}{8}, \frac{1}{4}$ or $\frac{1}{2}$, the pgf of $\left\lfloor\frac{3}{4} X\right\rfloor$ has 10 real roots

$$
w_{10}<w_{9}<\cdots<w_{1}<0
$$

and 10 conjugate pairs of roots

$$
z_{1}, \bar{z}_{1}, \ldots, z_{10}, \bar{z}_{10}
$$

with $0<\operatorname{Re}\left(z_{1}\right)<\cdots<\operatorname{Re}\left(z_{10}\right)$. With this ordering, $\left(u-w_{i}\right)\left(u-z_{i}\right)\left(u-\bar{z}_{i}\right)$ has positive coefficients for each $1 \leq i \leq 10$.

If X is $B\left(21, \frac{1}{2}\right),\left\lfloor\frac{3}{5} X\right\rfloor$ is not P_{3}. However, it is almost P_{3} in the sense that its pgf is the product 4 cubics, only one of which has a negative coefficient:

$$
\begin{gathered}
22\left(.00031+.021 u-.0058 u^{2}+u^{3}\right)\left(.12+.43 u+.14 u^{2}+u^{3}\right) \\
.\left(8.96+5.88 u+.92 u^{2}+u^{3}\right)\left(2993+317 u+8.49 u^{2}+u^{3}\right)
\end{gathered}
$$

The same pattern occurs if X is $B\left(n, \frac{1}{2}\right)$ for $n=25,35,50$.
Proposition If U, V are nonnegative integer valued random variables whose pgf's satisfy

$$
E u^{u}=E u^{V}\left(a u^{3}+b u^{2}+c u+d\right)
$$

with $d \geq 0, c+d \geq 0, b+c+d \geq 0$, then there is a coupling so that $U \leq V+3$ and $E(V+3-U)=b+2 c+3 d$.

The underlying fact that our results depend on involves polynomials with interlacing roots:

Theorem (Ghosh, Liggett, Pemantle). Let f be the pgf of a SR X taking values $0,1, \ldots, n$, which is a polynomial of degree n with all negative roots. Write

$$
f(x)=\sum_{i=0}^{k-1} x^{i} g_{i}\left(x^{k}\right)
$$

where g_{i} is a polynomial of degree $\left\lfloor\frac{n-i}{k}\right\rfloor$. Then $g_{0}, g_{i}, \ldots, g_{k-1}$ have interlacing, negative simple roots, with the largest being a root of g_{0}.

The proof is by induction on the degree of f.

For the induction argument, write $F(x)=(x+r) f(x)$ with $r>0$, where f has degree n and F has degree $n+1$. Consider the corresponding decomposition for F :

$$
F(x)=\sum_{i=0}^{k-1} x^{i} G_{i}\left(x^{k}\right)
$$

Then

$$
G_{i}(y)=r g_{i}(y)+ \begin{cases}y g_{k-1}(y) & \text { if } i=0 \\ g_{i-1}(y) & \text { if } i \geq 1\end{cases}
$$

Let the roots of the g_{i} 's be $\cdots<s_{4}<s_{3}<s_{2}<s_{1}<s_{0}<0$.

Then for $k=3$, for example, the following explains the proof.

$$
\left(\begin{array}{llllllllll}
& \cdots & s_{6} & s_{5} & s_{4} & s_{3} & s_{2} & s_{1} & s_{0} & 0 \\
& & & & & & & & & \\
g_{0} & \cdots & 0 & + & + & 0 & - & - & 0 & + \\
g_{1} & \cdots & + & + & 0 & - & - & 0 & + & + \\
g_{2} & \cdots & + & 0 & - & - & 0 & + & + & + \\
G_{0} & \cdots & - & + & + & + & - & - & - & + \\
G_{1} & \cdots & + & + & + & - & - & - & + & + \\
G_{2} & \cdots & + & + & - & - & - & + & + & +
\end{array}\right) .
$$

So, G_{0} has a root in $\ldots,\left(s_{3}, s_{2}\right),\left(s_{0}, 0\right), G_{1}$ has a root in $\ldots,\left(s_{4}, s_{3}\right),\left(s_{1}, s_{0}\right)$, and G_{2} has a root in $\ldots,\left(s_{5}, s_{4}\right),\left(s_{2}, s_{1}\right)$.

The proof that $\left\lfloor\frac{j}{k} X\right\rfloor$ is Q_{j} if X is $S R$ is similar. The h_{i} 's in the definition of property Q_{j} are

$$
h_{i}(u)=\sum_{i k \leq m j<(i+1) k} g_{m}(u) .
$$

For $j=4, k=7$

$$
h_{0}=g_{0}+g_{1}, \quad h_{1}=g_{2}+g_{3}, \quad h_{2}=g_{4}+g_{5}, \quad h_{3}=g_{6} .
$$

The proof is described in the following form:

