A Proof of Aldous' Spectral Gap Conjecture

Thomas M. Liggett, UCLA

Stirring Processes

Given a graph $G=(V, E)$, associate with each edge $e \in E$ a Poisson process Π_{e} with rate $c_{e} \geq 0$.

Labels are put on the vertices $v \in V$. At the event times of Π_{e}, interchange the contents of the two vertices joined by e.

Depending on the nature of the labels, one can define various continuous time Markov chains:

Let Q be the rate matrix for a symmetric, irreducible n-state Markov chain, i.e., $q(x, y)=q(y, x)$ is the exponential rate at which the chain goes from state x to state y :

$$
p_{t}(x, y)=q(x, y) t+o(t), \quad t \downarrow 0 \text { for } x \neq y
$$

Then $-Q$ has eigenvalues

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n-1}
$$

The smallest positive eigenvalue λ_{1} determines the rate of convergence to equilibrium:

$$
p_{t}(x, y)=\frac{1}{n}+a(x, y) e^{-\lambda_{1} t}+o\left(e^{-\lambda_{1} t}\right), \quad t \uparrow \infty
$$

It is the largest value of λ for which

$$
\frac{1}{2} \sum_{x, y} q(x, y)[g(y)-g(x)]^{2} \geq \lambda \sum_{x} g(x)^{2}, \quad \sum_{x} g(x)=0
$$

Consider the stirring process on the complete graph G with n vertices. The one particle Markov chain has $q(x, y)=c_{x y}$. The Markov chain on permutations has $q\left(\pi, \pi_{x y}\right)=c_{x y}$, where $\pi_{x y}$ is the permutation obtained from π by applying the transposition that interchanges x and y.

Let

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n-1}
$$

be the eigenvalues for the one particle Markov chain, and

$$
0=\lambda_{0}^{*}<\lambda_{1}^{*} \leq \lambda_{2}^{*} \leq \cdots \leq \lambda_{n!-1}^{*} .
$$

be the eigenvalues for the Markov chain on permutations.
Note: Each $\lambda_{i}=$ some λ_{j}^{*}, so $\lambda_{1}^{*} \leq \lambda_{1}$.

In fact, any sum of the form

$$
\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}
$$

is an eigenvalue of the permutation chain. There are $\sim 4^{n-1} / \sqrt{\pi n}$ eigenvalues of this type, and all are $\geq \lambda_{1}$. How about the others?

Aldous' Conjecture (1992): $\lambda_{1}^{*}=\lambda_{1}$.
Why guess this?

1. True for $c_{e} \equiv 1$ on complete graph - Diaconis and Shahshahani (1981).
2. True for $c_{e} \equiv 1$ on star graphs - Flatto, Odlyzko and Wales (1985).
3. True for general c_{e} on trees - Handjani and Jungreis (1996).
4. True for $c_{e} \equiv 1$ on complete multipartite graphs - Cesi (2009).
5. Other related results by Koma and Nachtergele (1997), Morris
(2008), Starr and Conomos (2008), and Dieker (2009).

Theorem.

On a general finite graph with arbitrary rates,

$$
\lambda_{1}^{*}=\lambda_{1}
$$

(Joint with P. Caputo (Rome) and T. Richthammer (UCLA).)

Why should you care?

1. It is MUCH easier to compute eigenvalues for an $n \times n$ matrix than for an $n!\times n!$ matrix.
2. "Intermediate" chains, such as symmetric exclusion have the same smallest positive eigenvalue.

The proof is by induction on the number of vertices:
Construct G_{x} by removing vertex x and edges leading to it. The rates for the remaining edges are increased:

$$
\text { New } c_{\{y, z\}}=c_{\{y, z\}}+\frac{c_{\{x, y\}} c_{\{x, z\}}}{c_{x}} ; \quad c_{x}=\sum_{y \neq x} c_{\{x, y\}} .
$$

Note:

(a) If x is connected to only two vertices y, z, this corresponds to an electrical network series reduction from $y \leftrightarrow x \leftrightarrow z$ to $y \leftrightarrow z$.
(b) If x is connected to three vertices y, z, w, it corresponds to an electrical network star-triangle reduction from the star with center x to the triangle y, z, w.
(c) The addition at the end corresponds to an electrical network parallel reduction.

Basic steps in the induction argument:

1. $\lambda_{1}\left(G_{x}\right) \geq \lambda_{1}(G)$. This is a consequence of the variational characterization: Given a function on G_{x}, extend it to G by making it harmonic at x.
2. Let $\mathcal{H}=\{f: E[f \mid$ position of i th particle $]=0$ for each $i\}$, and μ_{1}^{*} be the analogue of λ_{1}^{*} for functions in \mathcal{H}. Then

$$
\lambda_{1}^{*}=\min \left\{\lambda_{1}, \mu_{1}^{*}\right\} .
$$

Idea: eigenfunctions $\notin \mathcal{H}$ generate eigenfunctions of the one particle chain.
3. If the octopus inequality holds, then

$$
\mu_{1}^{*}(G) \geq \max _{x} \lambda_{1}^{*}\left(G_{x}\right)
$$

This again uses the variational characterization.
4. $\mu_{1}^{*}(G) \geq \max _{x} \lambda_{1}^{*}\left(G_{X}\right)=\max _{x} \lambda_{1}\left(G_{x}\right) \geq \lambda_{1}(G)$. Now use $\# 2$.

The octopus inequality: For fixed x,
$\sum_{y \neq x} c_{x y} \sum_{\pi}\left[f\left(\pi_{x y}\right)-f(\pi)\right]^{2} \geq \sum_{y, z \neq x} \frac{c_{\{x, y\}} c_{\{x, z\}}}{c_{x}} \sum_{\pi}\left[f\left(\pi_{y z}\right)-f(\pi)\right]^{2}$.
This is equivalent to the positive semi-definiteness of a certain matrix C. If $n=3$, for example,

$$
C=\left(\begin{array}{cccccc}
c & 0 & 0 & -c_{1} d & -c_{2} d & c_{1} c_{2} \\
0 & c & 0 & -c_{2} d & c_{1} c_{2} & -c_{1} d \\
0 & 0 & c & c_{1} c_{2} & -c_{1} d & -c_{2} d \\
-c_{1} d & -c_{2} d & c_{1} c_{2} & c & 0 & 0 \\
-c_{2} d & c_{1} c_{2} & -c_{1} d & 0 & c & 0 \\
c_{1} c_{2} & -c_{1} d & -c_{2} d & 0 & 0 & c
\end{array}\right)
$$

where $c=c_{1}^{2}+c_{1} c_{2}+c_{2}^{2}$ and $d=c_{1}+c_{2}$. The eigenvalues of C in this case are 0 and $2 c$, each with multiplicity 3 .

Ideas:

1. Try to write C as the covariance matrix of $Z=(X, Y)$, where X and Y are $n!/ 2$ random vectors. Choose X to have iid components with variance c. How about Y ?
2. Try $Y=D X$, where D is chosen so that $\operatorname{cov}(X, Y)$ is right. D is unique. Hope that the components of Y are uncorrelated and have variance c. This works for $n=3$, but fails for $n=4$.

However: If $n=4$, it turns out that $\operatorname{cov}(Y) \leq c l$, which is all that is needed. Could this be true in general?

To check this, write $c l-\operatorname{cov}(Y)$ as a linear combination of matrices A^{J}; the coefficients (both positive and negative) involve the rates, but the A^{J} do not. Here $J \subset V$ with $|J|=4$.

The π, π^{\prime} entry of A^{J} is
(2 if $\pi=\pi^{\prime}$ or $\pi^{-1} \pi^{\prime}=$ a product of 2 disjoint 2 -cycles from J; if $\pi^{-1} \pi$ is a 3 -cycle from J;
0 otherwise.

Need to know that the A^{J} 's and certain linear combinations B^{K} of the A^{J} 's are positive semi-definite: For $|K|=5$ and $x \in K$,

$$
B^{K}=\sum_{J: x \in J \subset K} A^{J}-A^{K \backslash\{x\}} .
$$

Example: For $n=4$,

$$
A=3\left(\begin{array}{ccc}
E_{4} & 0 & 0 \\
0 & E_{4} & 0 \\
0 & 0 & E_{4}
\end{array}\right)-E_{12}
$$

where E_{k} is the $k \times k$ matrix with all entries $=1$. This A has eigenvalues 0 and 12 with multiplicities 10 and 2 respectively.

Example: For $n=5, B$ is a 60×60 matrix with small integer entries.

It turns out that $B^{2}=24 B$, so its only eigenvalues are 0 and 24 . In fact, the multiplicities are 45 and 15 respectively.

But what about larger n ? It turns out that the corresponding matrices have a block form:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
A & 0 & 0 & \cdots \\
0 & A & 0 & \cdots \\
0 & 0 & A & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
& \left(\begin{array}{cccc}
B & 0 & 0 & \cdots \\
0 & B & 0 & \cdots \\
0 & 0 & B & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
\end{aligned}
$$

Here A and B are the matrices from the $n=4$ and $n=5$ cases.

The blocks correspond to:
the $n!/ 4$! left cosets of the even permutations on 4 sites in the even permutations on n sites for A
and
the $n!/ 5$! left cosets of the even permutations on 5 sites in the even permutations on n sites for B.

Why is $n=5$ the main case?
Each transposition affects two vertices, and we are looking at a matrix of the form $D^{t} D$, so entries in the product involve at most four vertices. But then there is the special vertex x that was removed in the induction argument, for a total of 5 .

Not all Markov chains based on stirring have the same smallest positive eigenvalue.

Example: Perfect matchings - see e.g., Diaconis and Holmes (2002). Take $n=2 k$. At rate $c_{x y}$:
(a) If x, y are matched, nothing happens.
(b) If not, then x, u and y, v are matched. After the transition, x, v and y, u are matched.

If γ_{1} is the smallest positive eigenvalue for this process, then

$$
\gamma_{1} \geq \lambda_{1}^{*}=\lambda_{1}
$$

but strict inequality can occur. If $k=2, n=4$ and $c_{e} \equiv 1$, $\lambda_{1}=4, \gamma_{1}=6$.

