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Stirring Processes

Given a graph G = (V ,E ), associate with each edge e ∈ E a
Poisson process Πe with rate ce ≥ 0.

Labels are put on the vertices v ∈ V . At the event times of Πe ,
interchange the contents of the two vertices joined by e.

Depending on the nature of the labels, one can define various
continuous time Markov chains:



 
 
 
 
 
 
One particle MC 
 
 
 
 
 
 
 
 
 
 
 
Symmetric exclusion 
 
 
 
 
 
 
 
 
 
 
 
 
 MC on permutations 



Let Q be the rate matrix for a symmetric, irreducible n-state
Markov chain, i.e., q(x , y) = q(y , x) is the exponential rate at
which the chain goes from state x to state y :

pt(x , y) = q(x , y)t + o(t), t ↓ 0 for x 6= y .

Then −Q has eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1.

The smallest positive eigenvalue λ1 determines the rate of
convergence to equilibrium:

pt(x , y) =
1

n
+ a(x , y)e−λ1t + o(e−λ1t), t ↑ ∞.

It is the largest value of λ for which

1

2

∑
x ,y

q(x , y)[g(y)− g(x)]2 ≥ λ
∑
x

g(x)2,
∑
x

g(x) = 0.



Consider the stirring process on the complete graph G with n
vertices. The one particle Markov chain has q(x , y) = cxy . The
Markov chain on permutations has q(π, πxy ) = cxy , where πxy is
the permutation obtained from π by applying the transposition
that interchanges x and y .

Let
0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1.

be the eigenvalues for the one particle Markov chain, and

0 = λ∗0 < λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n!−1.

be the eigenvalues for the Markov chain on permutations.

Note: Each λi = some λ∗j , so λ∗1 ≤ λ1.



In fact, any sum of the form

λi1 + · · ·+ λik

is an eigenvalue of the permutation chain. There are ∼ 4n−1/
√
πn

eigenvalues of this type, and all are ≥ λ1. How about the others?

Aldous’ Conjecture (1992): λ∗1 = λ1.

Why guess this?

1. True for ce ≡ 1 on complete graph – Diaconis and Shahshahani
(1981).
2. True for ce ≡ 1 on star graphs – Flatto, Odlyzko and Wales
(1985).
3. True for general ce on trees – Handjani and Jungreis (1996).
4. True for ce ≡ 1 on complete multipartite graphs – Cesi (2009).
5. Other related results by Koma and Nachtergele (1997), Morris
(2008), Starr and Conomos (2008), and Dieker (2009).



Theorem.

On a general finite graph with arbitrary rates,

λ∗1 = λ1.

(Joint with P. Caputo (Rome) and T. Richthammer (UCLA).)

Why should you care?

1. It is MUCH easier to compute eigenvalues for an n × n matrix
than for an n!× n! matrix.

2. “Intermediate” chains, such as symmetric exclusion have the
same smallest positive eigenvalue.
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The proof is by induction on the number of vertices:

Construct Gx by removing vertex x and edges leading to it. The
rates for the remaining edges are increased:

New c{y ,z} = c{y ,z} +
c{x ,y}c{x ,z}

cx
; cx =

∑
y 6=x

c{x ,y}.

Note:

(a) If x is connected to only two vertices y , z , this corresponds to
an electrical network series reduction from y ↔ x ↔ z to y ↔ z .

(b) If x is connected to three vertices y , z ,w , it corresponds to an
electrical network star-triangle reduction from the star with center
x to the triangle y , z ,w .

(c) The addition at the end corresponds to an electrical network
parallel reduction.



Basic steps in the induction argument:

1. λ1(Gx) ≥ λ1(G ). This is a consequence of the variational
characterization: Given a function on Gx , extend it to G by making
it harmonic at x .

2. Let H = {f : E [f | position of ith particle] = 0 for each i},
and µ∗1 be the analogue of λ∗1 for functions in H. Then

λ∗1 = min{λ1, µ
∗
1}.

Idea: eigenfunctions /∈ H generate eigenfunctions of the one
particle chain.

3. If the octopus inequality holds, then

µ∗1(G ) ≥ max
x
λ∗1(Gx).

This again uses the variational characterization.

4. µ∗1(G ) ≥ maxx λ
∗
1(Gx) = maxx λ1(Gx) ≥ λ1(G ). Now use #2.



The octopus inequality: For fixed x ,

∑
y 6=x

cxy

∑
π

[f (πxy )− f (π)]2 ≥
∑

y ,z 6=x

c{x ,y}c{x ,z}
cx

∑
π

[f (πyz)− f (π)]2.

This is equivalent to the positive semi-definiteness of a certain
matrix C . If n = 3, for example,

C =



c 0 0 −c1d −c2d c1c2

0 c 0 −c2d c1c2 −c1d
0 0 c c1c2 −c1d −c2d
−c1d −c2d c1c2 c 0 0
−c2d c1c2 −c1d 0 c 0
c1c2 −c1d −c2d 0 0 c

 ,

where c = c2
1 + c1c2 + c2

2 and d = c1 + c2. The eigenvalues of C
in this case are 0 and 2c , each with multiplicity 3.



Ideas:

1. Try to write C as the covariance matrix of Z = (X ,Y ), where
X and Y are n!/2 random vectors. Choose X to have iid
components with variance c . How about Y ?

2. Try Y = DX , where D is chosen so that cov(X ,Y ) is right. D
is unique. Hope that the components of Y are uncorrelated and
have variance c. This works for n = 3, but fails for n = 4.

However: If n = 4, it turns out that cov(Y ) ≤ cI , which is all
that is needed. Could this be true in general?

To check this, write cI − cov(Y ) as a linear combination of
matrices AJ ; the coefficients (both positive and negative) involve
the rates, but the AJ do not. Here J ⊂ V with |J| = 4.



The π, π′ entry of AJ is
2 if π = π′ or π−1π′ = a product of 2 disjoint 2-cycles from J;

−1 if π−1π is a 3-cycle from J;

0 otherwise.

Need to know that the AJ ’s and certain linear combinations BK of
the AJ ’s are positive semi-definite: For |K | = 5 and x ∈ K ,

BK =
∑

J:x∈J⊂K

AJ − AK\{x}.



Example: For n = 4,

A = 3

E4 0 0
0 E4 0
0 0 E4

− E12,

where Ek is the k × k matrix with all entries =1. This A has
eigenvalues 0 and 12 with multiplicities 10 and 2 respectively.

Example: For n = 5, B is a 60× 60 matrix with small integer
entries.

It turns out that B2 = 24B, so its only eigenvalues are 0 and 24.
In fact, the multiplicities are 45 and 15 respectively.



But what about larger n? It turns out that the corresponding
matrices have a block form:

A 0 0 · · ·
0 A 0 · · ·
0 0 A · · ·
...

...
...

. . .




B 0 0 · · ·
0 B 0 · · ·
0 0 B · · ·
...

...
...

. . .


Here A and B are the matrices from the n = 4 and n = 5 cases.



The blocks correspond to:

the n!/4! left cosets of the even permutations on 4 sites in the
even permutations on n sites for A

and

the n!/5! left cosets of the even permutations on 5 sites in the
even permutations on n sites for B.

Why is n = 5 the main case?

Each transposition affects two vertices, and we are looking at a
matrix of the form DtD, so entries in the product involve at most
four vertices. But then there is the special vertex x that was
removed in the induction argument, for a total of 5.



Not all Markov chains based on stirring have the same smallest
positive eigenvalue.

Example: Perfect matchings – see e.g., Diaconis and Holmes
(2002). Take n = 2k . At rate cxy :

(a) If x , y are matched, nothing happens.

(b) If not, then x , u and y , v are matched. After the transition,
x , v and y , u are matched.

If γ1 is the smallest positive eigenvalue for this process, then

γ1 ≥ λ∗1 = λ1,

but strict inequality can occur. If k = 2, n = 4 and ce ≡ 1,
λ1 = 4, γ1 = 6.


