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The Voter Model
(Holley and Liggett, 1975)

State of the system at any given time: An infinite array of
individuals that change opinions at random times:
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At exponential times, individuals choose a neighbor at random and
adopt his/her opinion.

A simulation with many opinions:





Back to two opinions R and D. Each individual flips a fair coin to
determine his/her initial opinion.

Questions:

(a) What is P(individual x has opinion R at time t)?

(b) What can be said about

P(individuals x and y have the same opinion at time t)

for large times t?

Answers:

(a) P(individual x has opinion R at time t) = 1
2 for all x , t.



For question (b), consider the model on a d-dimensional array.

If d = 1 or d = 2,

lim
t→∞

P(individuals x and y have the same opinion at time t) = 1.

However, if d ≥ 3, this limit, call it g(x , y), satisfies

1

2
< g(x , y) < 1 for x 6= y

and

lim
y−x→∞

g(x , y) =
1

2
.

In fact,

g(x , y) =
1

2
+

1

2
P(a random walk starting at y − x ever hits 0).



The Biased Voter Model, or
The Williams-Bjerknes Tumor Growth Model (1972)

Differences:
(a) It is more likely that health cells become cancerous than the
other way around.
(b) Start with a single cancerous cell. Given that the tumor does
not disappear, it has an asymptotic shape.

Here is a simpler discrete time model:

Richardson’s Model (1973)

Cancerous cells remain cancerous. Healthy cells become cancerous
at time n + 1 with probability p if at least one neighbor was
cancerous at time n.





Question: What is the asymptotic shape?

One answer: It has a straight edge if p > pc , where pc is the
critical value of a discrete time contact process. (Durrett and
Liggett, 1981)

Nonrigorously, pc ∼ .64. Rigrously, pc ≤ 2
3 .

Question: What is the limiting asymptotic shape as p ↓ 0?

Richardson speculated, based on simulations, that the limiting
shape is a circle. Kesten proved that in high dimensions, it is not a
sphere.



Question: Why consider infinite systems, when real systems are
finite?

Answer: Infinite models at infinite times are better models for
large finite systems at large finite times than are finite models at
infinite times.

The Contact Process
(Harris, 1974)

(a) Infected individuals become healthy at rate 1.
(b) Healthy individuals become infected at rate

λ×#(infected neighbors).

On a finite set, the infection dies out eventually for any λ.



On a d-dimensional grid, there is a critical value λd ,

1

2d
≤ λd ≤

2

d
,

so that

(a) the infection dies out eventually if λ ≤ λd ,
and
(b) survives with positive probability if λ > λd .

On an N × N × · · · × N grid, the extinction time τN satisfies:

τN ∼ log N if λ < λd

and
log τN ∼ Nd if λ > λd .

(log 1000 ∼ 7; log t = 1000⇒ t ∼ 10434.)



Exclusion Processes
(Spitzer, 1970)

From a 2009 paper by N. Bogoliubov (Steklov Mathematical
Institute, St. Petersburg, Russia):
“The totally asymmetric simple exclusion process (TASEP) ... is
connected with the ‘crystalline limit’ of the XXZ R-matrix. It is
one of the most studied models of low dimensional non-equilibrium
physics.”

In one dimension, the state of the system is:

· · · 1 1 0 1 0 1 1 1 0 · · ·

At random (exponential) times, particles try to move to the right
with probability p and to the left with probability q = 1− p.
Moves to occupied sites are not allowed.



Suppose p = 1 and the initial configuration is

· · · 1 1 1 1 1 0 0 0 0 0 · · ·

Question: What is the limiting distribution as t →∞?
Answer: Independent fair coin tossing, i.e.,

lim
t→∞

P(1 at time t) =
1

2
, lim

t→∞
P(11 at time t) =

1

4
, ...

Question: What if p is general, and the initial distribution is

· · · λ λ λ λ λ ρ ρ ρ ρ ρ · · ·?

Answer: If p = 1
2 , the limiting distribution is independent coin

tossing with parameter λ+ρ
2 . If p > 1

2 , the parameter is
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The PDE Connection

Rescale space and time, pretending that the states of sites are
independent. The result, letting

u(t, x) = the probability that site x is occupied at time t:

1. If p = 1
2 , the heat equation,

∂u

∂t
=

1

2

∂2u

∂x2
.

2. If p 6= 1
2 , Burger’s equation,

∂u

∂t
+ (p − q)

∂

∂x

[
u(1− u)

]
= 0.



Rates of Convergence for Symmetric Markov Chains

(Key words: Gibbs sampler; Markov Chain Monte Carlo — (MC )2)

Consider a finite graph, with nonnegative weights ce attached to
the edges.

Labels are places on the vertices.

At exponential times of rate ce , interchange the labels at the
vertices joined by e.

Depending on the nature of the labels, various Markov chains can
be defined:



 
 
 
 
 
 
One particle MC 
 
 
 
 
 
 
 
 
 
 
 
Symmetric exclusion 
 
 
 
 
 
 
 
 
 
 
 
 
 MC on permutations 



For the Markov chain on permutations, think in terms of

Card Shuffling

Vertices = positions in a deck labels = cards

1 Three of Clubs
2 Two of Diamonds
...

...
i Five of Diamonds
...

...
j Ten of Spades
...

...
52 Jack of Diamonds

At rate ci ,j , interchange Five of Diamonds and Ten of Spades.

Note: 52! ∼ 1068 >>>>> 52.



For a finite state Markov chain X (t), the transition probabilities are

pt(i , j) = P(X (t) = j | X (0) = i).

If P(t) is the matrix with entries pt(i , j), then

P(t) = eQt .

The smallest positive eigenvalue of λ of −Q determines the rate of
convergence to the equilibrium π:

pt(i , j) ∼ π(j) + a(i , j)e−λt , t ↑ ∞.

Let λ be this eigenvalue for the one particle process, and λ∗ be this
eigenvalue for the process on permutations. Then

λ ≥ λ∗.



Aldous’ Conjecture (1992): λ∗ = λ.

Why guess this?

1. True for ce ≡ 1 on complete graph – Diaconis and Shahshahani
(1981).

2. True for ce ≡ 1 on star graphs – Flatto, Odlyzko and Wales
(1985).

Why do we care?

1. It is MUCH easier to compute the eigenvalues of an n × n
matrix than of an n!× n! matrix.

2. The main eigenvalue for the symmetric exclusion process lies
between λ and λ∗, so it would follow that it agrees with the
common value of λ and λ∗.



Recent supporting results:

1. True for general ce on trees – Handjani and Jungreis (1996).

2. Other related results by Koma and Nachtergele (1997), Morris
(2008), Starr and Conomos (2008), Cesi (2009), and Dieker
(2009).

Theorem. (Caputo, Liggett and Richthammer, 2009)

On a general finite graph with arbitrary rates,

λ∗ = λ.


