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Two Problems on Stirring Processes –

And their Solutions

Thomas M. Liggett, UCLA

Given a graph G = (V ,E ), associate with each edge e ∈ E a
Poisson process Πe with rate ce ≥ 0.

Labels are put on the vertices v ∈ V . At the event times of Πe ,
interchange the contents of the two vertices joined by e.

Depending on the nature of the labels, one can define various
Markov chains:



 
 
 
 
 
 
One particle MC 
 
 
 
 
 
 
 
 
 
 
 
Symmetric exclusion 
 
 
 
 
 
 
 
 
 
 
 
 
 MC on permutations 



For the Markov chain on permutations, think in terms of

Card Shuffling

Vertices = positions in a deck labels = cards

1 Three of Clubs
2 Two of Diamonds
...

...
i Five of Diamonds
...

...
j Ten of Spades
...

...
52 Jack of Diamonds

At rate ci ,j , interchange Five of Diamonds and Ten of Spades.



Pemantle’s problem (2000). Suppose

G = Z 1 and ce =
1

2
for each e.

Symmetric exclusion: At t = 0, take

η = · · · 1 1 1 0 0 0 · · · ,

and let

Nt =
∑
x>0

ηt(x) = # particles to the right of the origin at time t.



Question: Does Nt satisfy the Central Limit Theorem?

The difficulty: Nt is a sum of Bernoulli random variables, but they
are NOT independent. In fact, they are negatively correlated.

This leads to a question for general G :

If the initial distribution is deterministic (or a product measure),
what can be said about the distribution at time t?



The generating polynomial of {η(1), ..., η(n)} is

f (z1, ..., zn) = Eµ
n∏

k=1

z
η(k)
k .

It is said to be stable if f 6= 0 whenever

Im(zk) > 0 for 1 ≤ k ≤ n.

Example. If η(k) are independent with

P(η(k) = 1) = pk ,

then

f (z1, ..., zn) =
n∏

k=1

[
pkzk + (1− pk)

]
,

so independent Bernoullis are stable.



Connection with negative correlations:

Theorem
If the distribution of

η = {η(k), 1 ≤ k ≤ n}

is stable, then the random variables are negatively associated, in
the sense that

Ef (η)g(η) ≤ Ef (η)Eg(η)

for all f , g ↑ depending on disjoint sets of variables.



Theorem
For a symmetric exclusion process, if the initial distribution is
stable, then so is the distribution at later times.

(Based on work with J. Borcea and P. Branden)

Theorem
If the distribution of

{η(k), 1 ≤ k ≤ n}

is stable, then there exist independent Bernoulli random variables

{ζ(k), 1 ≤ k ≤ n}

so that ∑
k

η(k) and
∑
k

ζ(k)

have the same distribution.



For the second result, let N =
∑

k η(k), and note that

f (z , ..., z) = EzN =
n∑

j=0

P
(
N = j

)
z j

is not zero if Im(z) > 0 or if Im(z) < 0 or if z > 0, so all roots are
negative:

EzN =
n∏

k=1

[
pkz + (1− pk)

]
,

where the roots are −(1− pk)/k .



Back to Pemantle’s problem:

By the Lindeberg-Feller Theorem, it is enough to consider the first
two moments. By duality,

ENt =
∑
x>0

Eηt(x) = EX+
t

and ∑
x>0

[Eηt(x)]2 = E min(X+
t ,Y

+
t ),

where Xt and Yt are independent simple random walks on Z 1

starting at 0. It is harder to estimate the sum of covariances,∑
x ,y>0,x 6=y

cov(ηt(x), ηt(y)).



But this can be done, with the result that

lim
t→∞

ENt√
t

=
1√
2π

and

0 < c1 ≤
var(Nt)√

t
≤ c2 <∞.

Theorem

Nt − ENt

[var(Nt)]1/2
⇒ N(0, 1).



Aldous’ conjecture (1992). Let Q be the rate matrix for a
symmetric, irreducible n-state Markov chain, i.e., qi ,j is the
exponential rate at which the chain goes from state i to state j .
Then −Q has eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1.

The smallest positive eigenvalue λ1 determines the rate of
convergence to equilibrium:

pt(i , j) =
1

n
+ ai ,je

−λ1t + o(e−λ1t).



Consider the stirring process on the complete graph G with n
vertices. The one particle Markov chain has qi ,j = ci ,j . The
Markov chain on permutations has qπ,πi,j = ci ,j , where πi ,j is the
permutation obtained from π by applying the transposition
interchanging i and j .

Let
0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1.

be the eigenvalues for the one particle Markov chain, and

0 = λ∗0 < λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n!−1.

be the eigenvalues for the Markov chain on permutations of the
vertices.
Each λi = some λ∗j , so λ∗1 ≤ λ1.



In fact, any sum of the form

λi1 + · · ·+ λik

is an eigenvalue of the permutation chain. There are ∼ 4n−1/
√
πn

eigenvalues of this type, and all are ≥ λ1. How about the others?

Aldous’ Conjecture (1992): λ∗1 = λ1.

Why guess this?

1. True for ce ≡ 1 on complete graph – Diaconis and Shashahani
(1981).
2. True for ce ≡ 1 on star graphs – Flatto, Odlyzko and Wales
(1985).
3. True for general ce on trees – Handjani and Jungreis (1996).
4. True for ce ≡ 1 on complete multipartite graphs – Cesi (2009).
5. Other related results by Koma and Nachtergele (1997), Morris
(2008), Starr and Conomos (2008), and Dieker (2009).



Why should you care?

1. It is MUCH easier to compute eigenvalues for an n × n matrix
than for an n!× n! matrix.
2. “Intermediate” chains, such as symmetric exclusion have the
same smallest eigenvalue.

Theorem
For arbitrary rates, λ∗1 = λ1.

(Joint with P. Caputo and T. Richthammer)

The proof is inductive. Remove vertex x and edges leading to it.
The rates for the remaining edges are increased:

New c{y ,z} = c{y ,z} +
c{x ,y}c{x ,z}

cx
; cx =

∑
y 6=x

c{x ,y}.

For the inductive step to work, need to check that a certain n!× n!
matrix C is positive semi-definite.
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If n = 3, for example,

C =



c 0 0 −c1d −c2d c1c2

0 c 0 −c2d c1c2 −c1d
0 0 c c1c2 −c1d −c2d
−c1d −c2d c1c2 c 0 0
−c2d c1c2 −c1d 0 c 0
c1c2 −c1d −c2d 0 0 c

 ,

where c = c2
1 + c1c2 + c2

2 and d = c1 + c2. The eigenvalues of C
in this case are 0 and 2c , each with multiplicity 3.

Idea: Try to write C as the covariance matrix of Z = (X ,Y ),
where X and Y are n!/2 random vectors. Choose X to have iid
components with variance c, and then Y = AX , where A is chosen
so that cov(X ,Y ) is right. Then hope that the components of Y
are uncorrelated and have variance c. This works for n = 3, but
fails for larger n.



However: It turns out that cov(Y ) ≤ cI , which is all that is
needed.

To check this, write cI − cov(Y ) as a linear combination of
matrices Ai ; the coefficients are products of rates, but Ai does not
depend on the rates.

Need to know that certain sums and differences of the Ai ’s are
positive semi-definite.

For example for n = 5, there is a certain 60× 60 matrix B with
small integer entries that must be considered. It turns out that
B2 = 24B, so its only eigenvalues are 0 and 24. In fact, the
multiplicities are 45 and 15 respectively.



But what about larger n? It turns out that the corresponding
matrix has a block form:

B 0 0 · · ·
0 B 0 · · ·
0 0 B · · ·
...

...
...

. . .

Why is n = 5 the main case? Each transposition affects two
vertices, and we are looking at the square of a matrix, so entries in
the square involve at most four vertices. But then there is the
special vertex x that was removed in the induction argument, for a
total of 5.
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