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Abstract

Strong negative dependence properties have recently been proved for the symmetric
exclusion process. In this paper, we apply these results to prove convergence to the Poisson
and Gaussian distributions for various functionals of the process.

1 Introduction

The symmetric exclusion process on the countable set S is the Markov process ηt on {0, 1}S with
formal generator

Lf(η) =
∑

η(x)=1,η(y)=0

p(x, y)[f(ηx,y)− f(η)],

where ηx,y is the configuration obtained from η by interchanging the coordinates η(x) and η(y).
Here p(x, y) = p(y, x) are the transition probabilities for a symmetric, irreducible, Markov chain
on S. For background on this process, see Chapter VIII of [10].

Many limit theorems of various types have been proved for this process. Examples are the
central limit theorems for a tagged particle and for the flux in one dimensional systems in [1],
[7], [8], [9], and [12]. In this paper, we focus on limit theorems that can now be proved using the
recently obtained strong negative dependence properties of the symmetric exclusion process.

A probability measure µ on {0, 1}S is said to be negatively associated if∫
fgdµ ≤

∫
fdµ

∫
gdµ
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for all increasing continuous functions f, g on {0, 1}S that depend on disjoint sets of coordinates.
Theorem 5.2 of [4] asserts that if the initial distribution of the symmetric exclusion process ηt is
a product measure, then the distribution of ηt is negatively associated for all t > 0. In fact, by
Proposition 5.1 of that paper, it has a stronger and even more useful property, known as strong
Rayleigh.

Limit theorems for negatively associated random variables have been proved by a number of
authors – see [2], [11], and [14], for example. In the case of convergence to the normal law, none
of these results quite fit our setting. In our situation, there is generally no translation invariance
in the covariance structure, and the sum of off-diagonal covariances is often not “little o” of the
sum of variances. However, we will see in Section 2 that the strong Rayleigh property makes it
quite easy to prove convergence to the Poisson and Gaussian laws, given estimates of variances
and covariances. Therefore, we will not need to use these earlier results.

The first situation we will consider involves the extremal stationary distributions for the
process. We recall their description – see Chapter VIII of [10]. Let

H =

{
α : S → [0, 1],

∑
y

p(x, y)α(y) = α(x) ∀x
}

,

and for α ∈ H, let να be the product measure with marginals ν{η : η(x) = 1} = α(x). Then
the limiting distribution as t → ∞ of the process at time t exists if the initial distribution is
να; call it µα. The result is that the extremal stationary distributions are exactly {µα, α ∈ H}.
If α is constant, then µα = να so we are really interested in nonconstant α’s, in which case
very little is known about the corresponding stationary distributions other than the marginals –
µα{η : η(x) = 1} = α(x). If p(x, y) are the transition probabilities for simple random walk on
a homogeneous tree, for example, there are many such nonconstant α’s, and therefore there are
many extremal stationary distributions that are not of product form. We now know from the
results in [4] that µα is negatively associated – and in fact strong Rayleigh – for each α ∈ H.

We will use the following notation. For n ≥ 1, p(n)(x, y) are the n-step transition probabilities
for the Markov chain with transition probabilities p(x, y), and for t > 0,

pt(x, y) = e−t

∞∑
n=0

tn

n!
p(n)(x, y)

are the transition probabilities for the corresponding continuous time chain Xt. The Green
function is given by

G(x, y) =
∞∑

n=0

p(n)(x, y) =

∫ ∞

0

pt(x, y)dt.

The Dirichlet sum of an α ∈ H is defined by

Φ(α) =
∑
x,y

p(x, y)[α(y)− α(x)]2.

This quantity is finite for many, but not all, elements of H if S is a regular tree, for example.
A construction of a class of infinite graphs with only one end that support nonconstant α ∈ H
with Φ(α) < ∞ is constructed in [6]. In this context, we have the following results. We use ⇒
to denote convergence in distribution.
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Theorem 1. Suppose α ∈ H and Φ(α) < ∞. If Sn ⊂ S satisfy
(a) limn→∞ supx∈Sn

α(x) = 0, limn→∞
∑

x∈Sn
α(x) = λ < ∞,

and
(b) supx,n

∑
y∈Sn

G(x, y) < ∞,
then under µα, ∑

x∈Sn

η(x) ⇒ Poisson(λ).

Theorem 2. Suppose α ∈ H and Φ(α) < ∞. If Sn ⊂ S satisfy

lim
n→∞

∑
x∈Sn

α(x)[1− α(x)] = ∞

and

lim inf
n→∞

∑
x∈Sn

α(x)[1− α(x)]

supx

∑
y∈Sn

G(x, y)
> Φ(α). (1)

Then under µα, ∑
x∈Sn

η(x)−
∑

x∈Sn
α(x)

[V arµα(
∑

x∈Sn
η(x))]1/2

⇒ N(0, 1).

Furthermore,

V arµα

( ∑
x∈Sn

η(x)

)/ ∑
x∈Sn

α(x)[1− α(x)] (2)

(which is at most one) is bounded below by a positive constant. If the left side of (1) is infinite,
then the limit of (2) as n →∞ is 1.

Theorems 1 and 2 will be proved in Section 3, after deriving limit theorems for general strong
Rayleigh Bernoulli random variables in Section 2.

As an example of the application of Theorems 1 and 2, let S be the binary tree, and let the
chain have nearest neighbor jumps with probability 1/3 each. Write S = L ∪ R where L, R are
defined as follows: A basis edge is fixed, and its endpoints are called left and right respectively.
Then L is the set of vertices that are closer to the left vertex than to the right, and R = S\L.
Each vertex x in S is assigned a level l(x) ≥ 0, which is the distance from x to the closer of
the two endpoints of the basis edge. Then G(x, y) = 2−d(x,y)+1, where d(x, y) is the distance
between x and y. Therefore, supx

∑
y:l(y)<n G(x, y) = 3n, supx

∑
y∈L:l(y)<n G(x, y) = 2n and

supx

∑
y∈L:l(y)=n G(x, y) = 3− 2−n.

For 0 ≤ λ, ρ ≤ 1, let α ∈ H be defined by

α(x) =

{
λ + ρ−λ

3·2l(x) if x ∈ L,

ρ + λ−ρ
3·2l(x) if x ∈ R,

and put µ = µα. Then Φ(α) = 2(ρ− λ)2/9,

Eµ
∑

x:l(x)<n

η(x) = (λ + ρ)(2n − 1),
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and ∑
x:l(x)<n

V arµη(x) = (2n − 1)[ρ(1− ρ) + λ(1− λ)] + (λ− ρ)2

[
2

3
n− 4

9
(1− 2−n)

]
.

It follows that for Sn = {x : l(x) < n}, the left side of (1) is infinite if

ρ(1− ρ) + λ(1− λ) > 0.

Therefore, for all choices of λ, ρ, Theorem 2 implies that∑
x:l(x)<n η(x)− (λ + ρ)2n

√
2n

⇒ N(0, ρ(1− ρ) + λ(1− λ)). (3)

Next take λ = 0, ρ = 1, in which case (3) has little content. Then Theorem 1 gives∑
x∈L:l(x)=n

η(x) ⇒ Poisson(1/3).

If Sn = {x ∈ L : l(x) < n}, the left and right sides of (1) are 1
6

and 2
9

respectively, so (1) does not
hold in this case. Nevertheless, we will see at the end of Section 3 that more careful estimates
imply that ∑

x∈L:l(x)<n η(x)− n
3

σn

⇒ N(0, 1), (4)

where σ2
n/n is asymptotically between 23

189
and 1

3
.

The next situation we consider was proposed in [13] as an application of the then hoped for
negative dependence properties of the symmetric exclusion process. Now S = Z1, and p(x, y) =
p(y − x), with

∑
x |x|p(x) < ∞. For the initial configuration, we take

η(x) =

{
1 if x ≤ 0,

0 if x > 0.

Since
∑

x<0<y p(x, y) < ∞, Wt =
∑

x>0 ηt(x) < ∞ a.s. for all t.

Theorem 3. Suppose σ2 =
∑

n n2p(n) < ∞. Then

Wt − EWt

[V ar(Wt)]1/2
⇒ N(0, 1) (5)

as t →∞. Furthermore,

lim
t→∞

EWt√
t

=
σ√
2π

,

and
V ar(Wt)

t1/2

is bounded above and below by positive constants.

Theorem 3 will be proved in Section 4. It seems likely that if the distribution p(·) is in the
domain of normal attraction of a (symmetric) stable law of index α ∈ (1, 2), then (5) holds with
V ar(Wt) of order t1/α, but this has not been checked.

The major result from [4] that we use in this paper is Proposition 5.1, which asserts that the
strong Rayleigh property is preserved by the evolution of a symmetric exclusion process. The
proof given there uses results from earlier papers, including Obreschkoff’s Theorem, which are
not part of the toolkit of a typical probabilist. In Section 5, we present an elementary proof of
that result in order to make the present paper essentially self-contained.
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2 Limit theorems for strong Rayleigh measures

Consider a probability measure µ on {0, 1}n. Its generating polynomial is defined for z ∈ Cn by

Q(z) = Q(z1, ..., zn) = Eµ

n∏
i=1

z
η(i)
i .

The measure µ is said to be Rayleigh if

∂Q

∂zi

(z)
∂Q

∂zj

(z) ≥ Q(z)
∂2Q

∂zi∂zj

(z), i 6= j, (6)

for all z ∈ Rn
+, and to be strong Rayleigh if (6) holds for all z ∈ Rn. Note that when z =

(1, 1, ..., 1), (6) says that η(i) and η(j) are negatively correlated under µ. By Theorem 4.9 of [4],
the strong Rayleigh property implies negative association.

Brändén ([5]) proved that the strong Rayleigh property is equivalent to the following property,
which is known as stability: Q(z) 6= 0 if zi has strictly positive imaginary part for each i. This
is the key to the following representation.

Proposition 4. Suppose µ is strong Rayleigh. Then there exist independent Bernoulli random
variables ζi with parameters pi so that the distribution of

∑
i η(i) under µ is the same as that of∑

i ζi.

Proof. Setting zi ≡ w in the expression for Q, we see that the polynomial in one variable

Q∗(w) = Q(w, w, ..., w) = Eµw
P

i η(i)

has no roots with positive imaginary part, and therefore all of its roots are real. Since Q∗(1) = 1,
it follows that Q∗ can be written in the form

Q∗(w) =
∏

i

(w + wi)

/ ∏
i

(1 + wi)

where the wi are real. Since Q∗(−wi) = 0, we see that wi ≥ 0 for each i. Letting pi = 1/(1+wi),
this becomes

Q∗(w) =
∏

i

[
piw + (1− pi)

]
,

which is the generating polynomial for
∑

i ζi.

Using this result, it is easy to extend the classical limit theorems to triangular arrays of strong
Rayleigh random variables.

Proposition 5. Suppose the Bernoulli random variables {ηn(x)} are strong Rayleigh for each n.
(a) If limn→∞

∑
x Eηn(x) = λ, limn→∞

∑
x[Eηn(x)]2 = 0, and

lim
n→∞

∑
x 6=y

Cov(ηn(x), ηn(y)) = 0,

then ∑
x

ηn(x) ⇒ Poisson(λ).
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(b) If limn→∞ V ar(
∑

x ηn(x)) = ∞, then∑
x ηn(x)− E

∑
x ηn(x)√

V ar(
∑

x ηn(x))
⇒ N(0, 1).

Proof. Using Proposition 4, let ζn,i be Bernoulli random variables that are independent in i for
each n, and have the property that∑

x

ηn(x) and
∑

i

ζn,i

have the same distribution for each n. It suffices to show that the conditions for Poisson and
normal convergence hold for the array ζn,i. But this is immediate from the assumptions and the
following identities: ∑

x

Eηn(x) =
∑

i

Eζn,i

and

V ar

( ∑
x

ηn(x)

)
=

∑
x

V ar(ηn(x)) +
∑
x 6=y

Cov(ηn(x), ηn(y))

=V ar(
∑

i

ζn,i) =
∑

i

V ar(ζn,i).

Remark 6. Proposition 5(a) is a consequence of Theorem 11 in [11] or Theorem 3D in [2] The
latter also gives bounds on the total variation distance from the Poisson distribution. We note
that under the strong Rayleigh assumption we are making, the proof is very simple.

3 The stationary distributions

We begin the proofs of Theorems 1 and 2 by obtaining a bound on the covariances for the measure
µ = µα. Let U and U(t) be the generator and semigroup for the motion of two independent copies
of the Markov chain with transition probabilities pt(x, y), and V and V (t) be the generator and
semigroup for the motion of two copies of that Markov chain with the exclusion interaction. Then
by (1.28) and (1.29) on page 373 of [10],

Eµη(x)η(y) = lim
t→∞

V (t)f(x, y), x 6= y,

where f(x, y) = α(x)α(y). Since U(t)f(x, y) = f(x, y), the integration by parts formula gives

−Covµ(η(x), η(y)) =f(x, y)− lim
t→∞

V (t)f(x, y)

= lim
t→∞

[
U(t)f(x, y)− V (t)f(x, y)

]
= lim

t→∞

∫ t

0

V (s)[U − V ]U(t− s)f(x, y)ds

=

∫ ∞

0

V (s)[U − V ]f(x, y)ds

(7)
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for x 6= y. From page 366 of [10], we see that for x 6= y,

(U − V )f(x, y) = p(x, y)[f(x, x) + f(y, y)− 2f(x, y)] = p(x, y)[α(x)− α(y)]2. (8)

Define ∆(x, y) = p(x, y)[α(x)− α(y)]2 for all x, y.
Let gn(x, y) = 1Sn×Sn(x, y). This is a positive definite function. Therefore, using the symmetry

of V (s), the fact that ∆(x, y) = 0 if x = y, and Proposition 1.7 on page 366 of [10], we see that

−
∑

x,y∈Sn;x 6=y

Covµ(η(x), η(y)) =

∫ ∞

0

∑
x 6=y

gn(x, y)V (s)∆(x, y)ds

=

∫ ∞

0

∑
x,y

∆(x, y)V (s)gn(x, y)ds

≤
∫ ∞

0

∑
x,y

∆(x, y)U(s)gn(x, y)ds

=
∑
x,y

∆(x, y)

∫ ∞

0

P x(Xs ∈ Sn)P y(Xs ∈ Sn)ds,

(9)

where Xs is the Markov chain with transition probabilities ps(x, y).

Proof of Theorem 1. Given the strong Rayleigh property of µ and Proposition 5(a), it suffices to
check that

lim
n→∞

∑
x,y∈Sn;x 6=y

Covµ(η(x), η(y)) = 0,

and therefore we need to check that the right side of (9) tends to zero. To do so, note that∫ ∞

0

P x(Xs ∈ Sn)ds =
∑
u∈Sn

G(x, u) ≤ C1 (10)

for some constant C1 by assumption (b). Next, since

sup
s>0

e−s s
k

k!
= e−k kk

k!
≤ C2√

k

for some constant C2, we have for any N ≥ 1,

P y(Xs ∈ Sn) ≤
N∑

k=0

∑
v∈Sn

p(k)(y, v) +
C1C2√

N
, (11)

so that for each y
lim

n→∞
sup
s>0

P y(Xs ∈ Sn) = 0. (12)

To see this, note that by the first part of assumption (a) of the theorem, the sets Sn eventually
do not intersect any finite subset of S. Therefore, for fixed N and y, the first term on the right
of (11) tends to zero as n → ∞. We then conclude that the right side of (9) tends to zero by
(10), (12), the finiteness of Φ(α) and the dominated convergence theorem.
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Proof of Theorem 2. By Proposition 5(b), we need to show that

lim
n→∞

V arµ

( ∑
x∈Sn

η(x)

)
= ∞. (13)

By (9),

−
∑

x,y∈Sn;x 6=y

Covµ(η(x), η(y)) ≤ Φ(α) sup
x

∑
u∈Sn

G(x, u).

Therefore, (13) follows from the assumptions in the theorem.

We now return to the example discussed in the introduction – the simple random walk on the
binary tree with

α(x) =

{
1

3·2l(x) if x ∈ L,

1− 1
3·2l(x) if x ∈ R,

and Sn = {x ∈ L : l(x) < n}. We will see that Proposition 5(b) applies, even though (1) fails.
In order to do so, we will use the structure of the problem to estimate the right side of (9) more
carefully.

First note that l(Xt) is a Markov chain on the nonnegative integers with drift 1
3
. Therefore

l(Xt)

t
→ 1

3
a.s. (14)

by the strong law of large numbers. Secondly, if β, γ > 0 are chosen so that

e−γ + e+γ = 3(1− β),

then
eβt−γl(Xt)

is a supermartingale, so that

1 ≥ Exeβnt−γl(Xnt) ≥ eβnt−γnP x(l(Xnt) < n).

This implies
P x(l(Xnt) < n) ≤ en(γ−βt) ≤ eγ−βt

if n ≥ 1 and t ≥ γ/β, which provides the domination in the following computation.

lim
n→∞

1

n

∑
x,y

∆(x, y)

∫ ∞

0

P x(Xs ∈ Sn)P y(Xs ∈ Sn)ds

= lim
n→∞

∑
x,y

∆(x, y)

∫ ∞

0

P x(Xnt ∈ Sn)P y(Xnt ∈ Sn)dt

=3
∑
x,y

∆(x, y)[1− α(x)][1− α(y)].

(15)

For the final step above, note that the integrand in the middle line tends to zero if t > 3 by (14),
while if t < 3,

lim
n→∞

P x(Xnt ∈ Sn) = P x(Xs ∈ L eventually) = 1− α(x).
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Next, we compute the right side of (15).

3
∑
x,y

∆(x, y)[1− α(x)][1− α(y)] =
∑

d(x,y)=1

[α(x)− α(y)]2[1− α(x)][1− α(y)]

=2

[
2

34
+

∞∑
n=1

2n 1

(3 · 2n)2

1

3 · 2n

1

3 · 2n−1
+

∞∑
n=1

2n 1

(3 · 2n)2

(
1− 1

3 · 2n

)(
1− 1

3 · 2n−1

)]
=

40

189
<

1

3
.

Combining this with (9) and (15), we see that

lim inf
n→∞

V ar

( ∑
x∈Sn

η(x)

)
n

> 0,

so that Proposition 5(b) gives (4).

4 Limit theorems in one dimension

In this section, we will prove Theorem 3. We need to consider the first and second moments of
Wt. By duality,

EWt =Eη
∑
x>0

ηt(x) =
∑
x>0

P η(ηt(x) = 1)

=
∑
x>0

P x(Xt ≤ 0) =
∑

y≤0<x

pt(x, y)

=
∞∑

n=1

npt(0, n) = E0X+
t .

(16)

Similarly, ∑
x>0

[
P η(ηt(x) = 1)

]2
=

∑
x>0;u,v≤0

pt(x, u)pt(x, v) = E(0,0) min(X+
t , Y +

t ), (17)

where Yt is an independent copy of Xt.
For the covariances, we proceed as in Section 3, but this time with f(x, y) = 1{x,y≤0} and

g(x, y) = 1{x,y>0}. For x 6= y, (U − V )f(x, y) = p(x, y)[f(x, x) + f(y, y)− 2f(x, y)], so for x 6= y,

(U − V )U(s)f(x, y) =p(x, y)[U(s)f(x, x) + U(s)f(y, y)− 2U(s)f(x, y)]

=p(x, y)[P x(Xs ≤ 0)− P y(Xs ≤ 0)]2

=p(x, y)[P 0(Xs ≥ x)− P 0(Xs ≥ y)]2 = ∆s(x, y),

where we define for all x, y,

∆s(x, y) =


p(x, y)[P 0(x ≤ Xs < y)]2 if x < y,

p(x, y)[P 0(y ≤ Xs < x)]2 if y < x,

0 if y = x.
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Then letting

K(t) = −
∑

x,y>0;x 6=y

Cov(ηt(x), ηt(y)),

we see that

K(t) =
∑

x,y>0;x 6=y

[U(t)− V (t)]f(x, y) =
∑

x,y>0;x6=y

∫ t

0

V (t− s)(U − V )U(s)f(x, y)ds

=

∫ t

0

∑
x 6=y

g(x, y)V (t− s)∆s(x, y)ds =

∫ t

0

∑
x,y

∆s(x, y)V (t− s)g(x, y)ds

≤
∫ t

0

∑
x,y

∆s(x, y)U(t− s)g(x, y)ds

=

∫ t

0

∑
x,y

∆s(x, y)P 0(Xt−s < x)P 0(Xt−s < y)ds.

(18)

Let ρ(t, x) = P 0(Xt < x). Since ∆s(x, y) = ∆s(y, x) = ∆s(1−x, 1− y), we may continue (18)
by writing

K(t) ≤1

2

∫ t

0

∑
x,y

∆s(x, y)[ρ(t− s, x)ρ(t− s, y) + ρ(t− s, 1− x)ρ(t− s, 1− y)]ds

=

∫ t

0

∑
x<y

p(x, y)[P 0(x ≤ Xs < y)]2γ(t− s, x, y)ds,

(19)

where
γ(t, x, y) = ρ(t, x)ρ(t, y) + ρ(t, 1− x)ρ(t, 1− y).

Note that since ρ(t, x) + ρ(t, 1− x) = 1, it follows that γ(t, x, y) ≤ 1. Now let

Γ(t, n, u, v) =
∑

x:x≤u,v<x+n

γ(t, x, x + n) ≤ (n− |v − u|)+. (20)

Then using the symmetry and translation invariance of ps(x, y),

K(t) ≤
∫ t

0

∞∑
n=1

p(n)
∑
u,v

ps(0, u)ps(0, v)Γ(t− s, n, u, v)ds

=

∫ t

0

∞∑
n=1

p(n)E0Γ(t− s, n, Xs, Xs −X2s)ds

≤
∫ t

0

∞∑
n=1

p(n)E0(n− |X2s|)+ds.

(21)

Now assume that σ2 =
∑

n n2p(n) < ∞, and write

E0(n− |X2s|)+ =
n∑

k=−n

(n− |k|)p2s(0, k) ≤ n2p2s(0, 0),

10



where the inequality comes from

[p2s(0, k)]2 =

[∑
j

ps(0, j)ps(j, k)

]2

≤
∑

j

[ps(0, j)]
2
∑

j

[ps(j, k)]2 = [p2s(0, 0)]2.

Therefore,

lim sup
t→∞

1√
t

∫ t

0

∑
n>N

p(n)E0(n− |X2s|)+ds ≤ 1

σ
√

π

∑
n>N

n2p(n). (22)

by the local central limit theorem. For the terms corresponding to small n, we have given up
too much in using the inequality in (20). To handle these terms, first note that for fixed k,
conditionally on |X2s| = k, Xs/

√
s is asymptotically normal with mean 0 and variance σ2/2.

Now take fixed k, n with 0 ≤ k ≤ n. Then

E0[Γ(t− s, n, Xs, Xs −X2s) | X2s = k] =E0

[ ∑
Xs−n<x≤Xs−k

γ(t− s, x, x + n)

∣∣∣∣X2s = k

]

=E0

[ n−1∑
y=k

γ(t− s, Xs − y, Xs − y + n)

∣∣∣∣X2s = k

]
.

Write

E0[γ(t− s, Xs − y,Xs − y + n) | X2s = k] = P 0(Yt−s < Xs − y, Zt−s < Xs − y + n | X2s = k)

+ P 0(Yt−s < 1−Xs + y, Zt−s < 1−Xs + y − n | X2s = k),

where Xt, Yt, Zt are independendent copies of the random walk. If s, t →∞ with s/r → r ∈ (0, 1),
then the above expression converges to

P

(
N2 ≤

√
r

2(1− r)
N1, N3 ≤

√
r

2(1− r)
N1

)
+P

(
N2 ≤ −

√
r

2(1− r)
N1, N3 ≤ −

√
r

2(1− r)
N1

)
,

where N1, N2, N3 are independent normally distributed random variables with mean zero and
variance 1. Call this expression h(r). Note that h(r) < 1 for r < 1, so that

H =

∫ 1

0

h(r)

2
√

r
dr < 1.

Passing to the limit in (21) we see that

lim sup
t→∞

K(t)√
t
≤ H

σ
√

π

N∑
n=1

n2p(n) +
1

σ
√

π

∑
n>N

n2p(n).

Taking N →∞ gives

lim sup
t→∞

K(t)√
t
≤ Hσ

2
√

π
.

Recalling from (16) and (17) that

V ar(Wt) = E0X+
t − E0 min(X+

t , Y +
t )−K(t),
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we see that
lim sup

t→∞
t−1/2V ar(Wt) ≤

σ

2
√

π

and

lim inf
t→∞

t−1/2V ar(Wt) ≥
(1−H)σ

2
√

π
> 0.

So, Theorem 3 follows from Proposition 5(b) and the strong Rayleigh property of {ηt(x), x > 0}.

5 Stability and the symmetric exclusion process

In this section, we present an elementary proof of the basic fact needed to prove preservation of
stability by the symmetric exclusion process. A similar proof was obtained independently by [3]

A polynomial Q(z1, ..., zn) with complex coefficients is said to be stable if Q(z1, ..., zn) 6= 0
whenever =(zi) > 0 for each i. The key result needed to show that the generating polynomial
of the distribution a symmetric exclusion process at time t is stable whenever this is the case at
time 0 is the following.

Theorem 7. Suppose the multi-affine polynomial Q is stable. Then so is the polynomial Qp for
0 ≤ p ≤ 1, where

Qp(z1, ..., zn) = pQ(z1, ..., zn) + (1− p)Q(z2, z1, z3, ..., zn).

The proof of Theorem 7 is based on the following characterization of stability for multi-affine
polynomials in two variables.

Proposition 8. Suppose h(z, w) = a + bz + cw + dzw, where a, b, c, d are complex, and not all
zero. Then h is stable if and only if

<(bc− ad) ≥ |bc− ad|, =(ab) ≥ 0, =(ac) ≥ 0, =(bd) ≥ 0, =(cd) ≥ 0. (23)

Proof. If b = c = d = 0, the h is automatically stable, since then a 6= 0. If d = 0, b 6= 0, then
h(z, w) = 0 iff

z = −(a + cw)b

|b|2
,

so stability is equivalent to =(w) > 0 ⇒ =(z) ≤ 0, where

=(z) = −=(ab) + <(cb)=(w) + =(cb)<(w)

|b|2
.

Therefore, since <(w) is arbitrary, stability is equivalent to cb ≥ 0 and =(ab) ≥ 0, and these
imply =(ac) = bc=(ab)/|b|2 ≥ 0 in this case.

So, we may now assume that d 6= 0. Solving for z, we see that h(z, w) = 0 iff

b + dw = 0, a + cw = 0 (24)

or

b + dw 6= 0, z = −a + cw

b + dw
= −ab + cbw + adw + cd|w|2

|b + dw|2
. (25)
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Case (24) occurs iff

w = − b

d
= − bd

|d|2
, bc = ad. (26)

Therefore, if bc 6= ad, stability is equivalent to the statement

=(w) ≥ 0 ⇒ =(ab) + <(w)=(cb + ad) + =(w)<(cb− ad) + |w|2=(cd) ≥ 0, (27)

while if bc = ad, stability is equivalent to this, together with =(bd) ≥ 0.
Letting w be real, we see that for (27) to hold, we need

=(ab) ≥ 0, =(cd) ≥ 0, [=(cb + ad)]2 ≤ 4=(ab)=(cd).

Note that
4=(ab)=(cd)− [=(cb + ad)]2 = [<(cb− ad)]2 − |bc− ad|2.

Minimizing the expression in (27) over <(w), we see that we also need <(cb−ad) ≥ 0 if =(cd) = 0,
and

=(ab)− [=(cb + ad)]2

4=(cd)
+ <(cb− ad)t + =(cd)t2 ≥ 0, t ≥ 0 (28)

if =(cd) > 0. Since the discriminant of this quadratic is

[<(cb− ad)]2 + [=(cb + ad)]2 − 4=(ab)=(cd) = |bc− ad|2 ≥ 0,

if =(cd) > 0, (28) is always true if bc = ad, while if bc 6= ad, (28) is equivalent to <(cb− ad) ≥ 0.
Putting these observations together, noting that stability is not changed if the roles of b and c
reversed, completes the proof.

Proof of Theorem 7. We need to show that Qp(z1, ..., zn) 6= 0 whenever =(zi) > 0 for i = 1, ..., n.
To to so, fix z3, ...zn with =(zi) > 0 for i = 3, ..., n, and write

h(z, w) = Q(z, w, z3, ..., zn).

Then h is of the form considered in Proposition 8, and we must show that if (23) holds for a
given a, b, c, d, then it also holds with b and c replaced by

b(p) = pb + (1− p)c, c(p) = pc + (1− p)b.

This follows from

=(ab(p)) = p=(ab) + (1− p)=(ac), =(ac(p)) = p=(ac) + (1− p)=(ab),

=(b(p)d) = p=(bd) + (1− p)=(cd), =(c(p)d) = p=(cd) + (1− p)=(bd),

and
<(b(p)c(p)− ad) = <(bc− ad) + p(1− p)|b− c|2,

b(p)c(p)− ad = (bc− ad) + p(1− p)(b− c)2,

so that
<(b(p)c(p)− ad)− |b(p)c(p)− ad| ≥ <(bc− ad)− |bc− ad|

by the triangle inequality.
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Corollary 9. Suppose the generating polynomial of the initial distribution of a symmetric exclu-
sion process on a finite set S is stable. Then the same is true at time t > 0.

Proof. View the process in terms of stirrings. In other words, for each pair x, y ∈ S interchange
η(x) and η(y) at Poisson times at a certain rate. If stirrings are applied at only one pair of
sites, the generating polynomial of the distribution at time t is of the form Qp given in the
statement of Theorem 5, where Q is the generating polynomial of the initial distribution. For a
general exclusion process, the distribution at time t can be obtained as a limit of that obtained
by successively applying stirrings at different pairs of sites.
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