Corrections for "Interacting Particle Systems" by Thomas M. Liggett

Page 33, line 9 from the bottom. Change braces to parentheses: $c_T(\eta, d\zeta)$.

Page 82, line 6 from the bottom. Change the n on the main line to an η :

$$G(\eta) = E^{\eta} g(\eta, \eta_{s_1}, ..., \eta_{s_{n-1}}).$$

Page 111, display (8.11). The symbol under the summation should be x instead of y:

$$\mu(y) = \sum_{x} \nu(x)a(x - y).$$

Page 131, line 18. There is a missing parenthesis in the middle display:

$$\sup_{\xi} |\overline{c}(x,\xi) - \overline{c}(x,\xi_u)| \ge \sup_{\eta} |c(x,\eta) - c(x,\eta_u)|$$

Page 171, second line following the display in Example 5.33: that should be than: dimensional contact process. For λ larger than its critical value, the one-

Page 185, line 3. Change the last ζ to γ :

$$\nu_{T_2,\zeta}(\cdot \mid \eta = \gamma \text{ on } T_2 \backslash T_1) = \nu_{T_1,\gamma}(\cdot)$$

Page 204, line 5. The display should read:

$$2\overline{\nu}\{\eta: \eta(x) = 1\} - 1 = [1 - (\sinh 2\beta)^{-4}]^{1/8}$$

Page 210, line 4. Change to: for all $f \in D(X)$.

Page 220, line 3 from the bottom. The subscript on α should be T_n :

$$\lim_{n \to \infty} \frac{1}{n^d} \sum_{x \in T_n} \alpha_{T_n}(x) = 0.$$

Page 229, line 7. Change Chapter I to Chapter II.

Page 231, display (1.14). The final A should have bars around it:

$$g(A) = P^A(|A_t| < |A| \text{ for some } t \ge 0).$$

Page 232, line 6. ... greater than or equal ...

Page 241, line 11. The final symbol should be \emptyset rather than 0:

(c) $A_t = B_t \cup C_t$ for $t < \tau$, where τ is the first time that $B_t \cap C_t \neq \emptyset$.

Page 275, line 10. ... At this point, we know that...

Page 280, line 1 from the bottom. Add a comma:

$$X_{m,n}^{N} = \max(X_{m,n}, -N(n-m)).$$

Page 312, line 7 from the bottom. \dots Of course a major difficulty in proving the \dots

Page 370, (b) of Lemma 1.18. There is a missing $\vec{\cdot}$:

(b)
$$\lim_{t\to\infty} U_2(t)g_2(\vec{x}) = 0$$
 for all $\vec{x}\in S^2$, and

Page 395, lines 4, 7 and 8. Change $A \in S \setminus \{0\}$ to $A \subset S \setminus \{0\}$.

Page 411. The top display should read:

$$\begin{split} 0 \leq & \mu_2\{\eta: \eta(x) = 1, \eta(y) = 1\} - \mu_1\{\eta: \eta(x) = 1, \eta(y) = 1\} \\ \leq & [\mu_2\{\eta: \eta(x) = 1\} - \mu_1\{\eta: \eta(x) = 1\}] \\ & + [\mu_2\{\eta: \eta(y) = 1\} - \mu_1\{\eta: \eta(y) = 1\}]. \end{split}$$