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Abstract

We consider the game in which b buyers seek to purchase 1 unit of an indivisible good
from s sellers, each of whom have k units to sell. The good is worth 0 to each seller and 1
to each buyer. Using results from Brownian motion, we find a closed form solution for the
limiting Shapley value as s and b increase without bound. This asymptotic value depends
upon the store size k, the limiting ratio b/ks of buyers to items for sale, and the limiting
ratio [ks−b]/

√
b + s of the excess supply relative to the square root of the number of market

participants.
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1 Introduction

An important issue in economics is the extent to which vigorous competition causes firm profits

to vanish. Adam Smith explained why increasing the demand for a good would lead to a higher

price, but, unlike Edgeworth, he didn’t envisage situations in which a tiny reduction in demand

would induce the price to collapse and cause the sellers’ surplus to vanish.1 Yet this pathology

is the case in the simple many-player market game examined in this note.

In this note we consider a simple market game with many symmetric buyers and sellers.

In this market game, both the core and the Nash equilibrium in prices (Bertrand competition)

implicitly entail competition so vigorous that they can result in the total surplus on one side

of the market falling to zero when there is a slight increase in the number of players on that

side of the market. We show that the Shapley value leads to a natural continuous interpolation

between the two extreme situations, and is thereby the preferred solution concept.

The market game finds each of s sellers possessing k units of an indivisible good to sell, and

the good is worth 0 to each seller. There are b buyers each seeking to purchase 1 unit, and

the good is worth 1 to each buyer. Obviously, k, s, and b are positive integers, and this is the

simplest game that captures trade in a market with many agents. When k > 1, each seller is a

“store” with k units for sale.

When buyers exceed the number of units for sale (b > ks), the core of this game has a

transaction price of 1; the Nash equilibrium in prices (Bertrand competition) also predicts a

price of 1. When the number of units for sale exceed the number of buyers (ks > b), these

equilibrium concepts predict a transaction price of 0. On the other hand, when ks = b, these

solution concepts admit any price between 0 and 1.

While these results parallel our ideas of perfect competition, they are not reasonable pre-

dictions for the outcome of generalized bargaining situations. For example, when k = 1 and s

is large, say s = 106, it is preposterous to predict that s sellers facing b = s + 1 buyers would

each obtain a price of 1, whilst the addition of two more sellers would drop the price to 0.

The Shapley value smooths the discontinuity for this game in a manner consonant with the

economic landscape: the addition of buyers induces a gradual increase in the equilibrium price.

Traditionally, the Shapley value has been viewed as more “cooperative” than the core,

involving the balancing of probabilities of various coalitons being formed. Recently, there has
1At the exact middle of Chapter VII, “Of the Natural and Market Price of Commodities,” Adam Smith [5]

asserts that “A public mourning raises the price of black cloth . . . and augments the profits of the merchants

who possess any considerable quantity of it. . . . It sinks the price of coloured silks and cloths, and thereby

reduces the profits of the merchants who have any considerable quantity of them upon hand.”
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been considerable interest in non-cooperative rationales for the Shapley value. Two influential

examples are Gul’s [1] model of random bilaterial contracting and Hart and Mas-Colell’s [2]

model of sequential bilateral offers.

While the behavior of the Shapley value is clear when there are a small numbers of players,

its behavior is not well understood (or known) as the size of the market grows very large.

Shapley and Shubik [4] analyze this problem when k = 1 and provide asymptotic results for

two cases. In the first the ratio of buyers to sellers is fixed with b = αs; in the second the

difference d between the number of buyers and sellers is a fixed constant d: b = s + d. When

α > 1, the Shapley value converges to 1 and coincides with the core as the size of the market

increases. Similarly, the Shapley value converges to 0 when α < 1, just like the core. When the

difference between the number of buyers and sellers is d, the Shapley value converges to 0.5 as

the size of the market increases. In sharp contrast, the core yields equilibrium prices of 1 when

d > 0, 0 when d < 0, and the equilibrium price is indeterminate when d = 0.

We show that the asymptotic Shapley value for this market game is not restricted to the

values 0, 1/2, and 1; in fact, all values between 0 and 1 are possible. Let M ≡ b + s denote the

size of the market, and let d ≡ ks − b denote the excess supply. Using an old result about the

Brownian bridge, we provide a closed form expression for the limit of the Shapley value of this

game as a function of u ≡ limb,s→∞ d/
√

M . As long as the difference d between units for sale

and buyers grows in proportion to the square root of the size of the market, the asymptotic

Shapley value (for each unit) can take on any intermediate value between 0 and 1.

One way to decide which of several solution concepts is most appropriate for a particular

game is to select the concept which produces the most intuitive or plausible answer. On this

ground, we find the Shapley value to be more appropriate than either the core or the Nash

equilibrium for our simple market bargaining game.

2 The Closed Form Solution

We now present a closed form solution which gives the asymptotic Shapley value as s and

b increase to ∞. A particularly interesting aspect of our solution is that for each price p

between 0 and 1, there are growth rates for s and b such that the Shapley value converges to p:

asymptotically, the Shapley value traces out each possible price. This stands in stark contrast

to the other solution concepts which yield prices of 0, 1, or an indeterminate price (or all prices)

between 0 and 1.

To begin set k = 1, and let V (b, s) denote the Shapley value for a seller in this game

(naturally, the value added by all players is v ≡ min(b, s) so that a buyer’s Shapley value is
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[v− sV (b, s)]/b). To compute V (b, s), consider those permutations of the b+ s players in which

a given seller is the i +1st player. There is some number j of buyers amongst the first i players

in the permutation whence there are i− j sellers amongst the first i players. This seller’s value

added is 1 if the number j of buyers is strictly greater than the number i − j of sellers: the

seller’s value added is 1 if and only if 2j > i. Clearly, the probability that this seller is the i+1st

player is 1/(b+s). The product
(
b
j

)(
s−1
i−j

)
/
(
s+b−1

i

)
of binomial coefficients is the probability that

the first i players in a permutation has j buyers and i − j sellers given that the i + 1st player

is a seller. Consequently, V (b, s) can be written as

V (b, s) =
1

b + s

s+b−1∑
i=0

∑
2j>i

(
b
j

)(
s−1
i−j

)
(
s+b−1

i

) .

More generally, when each seller is a store of integer size k with k ≥ 1, a similar argument

to the one above reveals that the expression for V (s, b), the Shapley value for each seller (who

has k units for sale), is

V (b, s) =
1

b + s

s+b−1∑
i=0

∑
(k+1)j>ik

min{k, j − (i − j)k}
(b
j

)(s−1
i−j

)
(
s+b−1

i

) .

Theorem: Let b, s → ∞ so that b/ks → α.

(a) If α < 1, then V (b, s) → 0.

(b) If α > 1, then V (b, s) → k.

(c) If α = 1, suppose that
ks − b√

b + s
→ u.

Then

V (b, s) → k2

√
2π

∫ ∞

0

x2

u2 + kx2
e−x2/2dx if u ≥ 0,

and

V (b, s) → k − k2

√
2π

∫ ∞

0

x2

u2 + kx2
e−x2/2dx if u ≤ 0.

Proof : We first write V in terms of a simple random walk. Take 0 < p < 1, let X1, X2, ... be

independent identically distributed Bernoulli random variables with

P (Xi = 1) = p, P (Xi = 0) = q = 1 − p,

and let Sm = X1 + · · · + Xm be the corresponding partial sums. Setting N = b + s − 1, we see

that

P (Sb = j | SN = i) =
P (Sb = j)P (Ss−1 = i − j)

P (SN = i)
=

(
b
j

)
pjqb−j

(
s−1
i−j

)
pi−jqs−1−i+j

(
N
i

)
piqN−i

=

(
b
j

)(
s−1
i−j

)
(s+b−1

i

) .

5



Therefore,

V (b, s) =
1

b + s

s+b−1∑
i=0

∑
(k+1)j>ik

min{k, j − (i − j)k}P (Sb = j | SN = i)

=
1

N + 1

N∑
i=0

E

{
min{k, (k + 1)Sb − ik}; (k + 1)Sb > ik | SN = i

}
,

where E(X; A) ≡ E(X · 1A) for a random variable X and a set A.

The process {YN (t) : 0 ≤ t ≤ 1} that appears in standard invariance principles is defined

by ([x] ≡ integer part of x):

YN (t) =
S[Nt] − [Nt]p√

N
, 0 ≤ t ≤ 1.

Define the random variable Zb,i by Zb,i = (k + 1)Sb − ik and the set AN,i by AN,i = {SN = i}.
Writing Zb,i and AN,i in terms of YN , we have Zb,i = (k + 1)

√
N YN ( b

N ) + (k + 1)bp − ik and

AN,i = {YN (1) = i−Np√
N

}, so that

V (b, s) =
1

N + 1

N∑
i=0

E

{
min{k, Zb,i}; Zb,i > 0 | AN,i

}
.

Suppose [ks − b]/
√

b + s → u with u ∈ [−∞,∞] and b/(b + s) → t. Because Zb,i is

integer-valued, we have

E[min{k, Zb,i}; Zb,i > 0 | AN,i] = E[Zb,i ; 1 ≤ Zb,i < k | AN,i] + kP (Zb,i ≥ k | AN,i).

By [3, Theorem 4], (YN ( b
N ) | AN,i) = (YN ( b

N ) | YN (1) = (i − Np)/
√

N ) converges weakly to

Y (t) =
√

p(1 − p)B0(t), where B0(t) is the standard Brownian bridge.2 As a consequence, the

first term is seen to go to 0 as N → ∞ because (YN ( b
N ) | AN,i) is approximately normal so

that the probability that Zb,i = (k + 1)
√

N YN ( b
N ) + (k + 1)bp − ik lies in a bounded interval

goes to zero.

To find the second term, set i = [(b + s)p]. Again, using [3, Theorem 4], we have

P (Zb,i ≥ k | AN,i) = P (YN (
b

N
) ≥ k(i + 1) − (k + 1)bp

(k + 1)
√

N
| AN,i) → P (Y (t) ≥ up

k + 1
). (1)

Using (1) and the bounded convergence theorem, we have

V (b, s) → k

∫ 1

0
P

(√
p(1 − p) B0(t) >

up

k + 1

)
dp = k

∫ 1

0
P

(
B0(t) >

u

k + 1

√
p

1 − p

)
dp. (2)

2Let B(t) be standard Brownian motion. The Brownian bridge B0(t) is obtained by “conditioning” B(·) on

the zero probability event {B(1) = 0}. Distributionally, it can be written as B0(t) = B(t) − tB(1).
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If t < k/(k + 1), then u = +∞, so the right of (2) is zero. If t > k/(k + 1), u = −∞, so the

right of (2) is 1.

If t = k/(k + 1), then u can take any value. We show the result for the case u ≥ 0 (the case

u ≤ 0 is almost identical). Because B0(k/(k+1)) is N(0, k/(k+1)2), B0(k/(k+1))/[
√

k/(k+1)]

is a standard normal random variable, which we denote by Z. Define the function g(x, p) to

be 1 if x ≥ u
√

p/
√

k(1 − p) and 0 otherwise. Then utilizing (2) and interchanging the order of

integration, we obtain

V (b, s) → k

∫ 1

0
P

(
Z >

k + 1√
k

· u

k + 1

√
p√

1 − p

)
dp = k

1√
2π

∫ 1

0
[
∫ ∞

0
e−x2/2g(x, p)dx]dp

= k
1√
2π

∫ ∞

0
[
∫ 1

0
g(x, p)dp] e−x2/2dx = k

1√
2π

∫ ∞

0

kx2

u2 + kx2
e−x2/2dx.

The equilibrium market price for each unit of the item is V (b, s)/k. In a large market, the

closed form solution reveals that when 0 < u < ∞, limb,s→∞V (b, s)/k is strictly increasing in

k, with limit 1/2: when there is an excess supply (ks > b), larger stores induce an increase in

the equilibrium market price. [The opposite is true when −∞ < u < 0.]
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