T. Liggett Mathematics 31B - First Midterm Solutions April 17, 2009
(9) 1. The size of a certain population grows exponentially, and is $P(t)$ at time t. Given that $P(0)=10$ and $P(1)=11$, at what time will the size of the population be 30 ?
Solution. By exponential growth, $P(t)=10 e^{k t}$ for some k. Since $11=$ $P(1)=10 e^{k}, e^{k}=11 / 10$. The desired t satisfies $30=10 e^{k t}=10(11 / 10)^{t}$. Therefore, $\ln 3=t \ln (11 / 10)$, so that $t=\ln 3 / \ln (11 / 10)$.
(16) 2. Let $f(x)=\frac{x^{3}}{x^{2}+1}$.
(a) Show that f is strictly increasing, and hence one-to-one.

Solution.

$$
f^{\prime}(x)=\frac{3 x^{2}+x^{4}}{\left(x^{2}+1\right)^{2}},
$$

which is strictly positive, except for $x=0$. Therefore, f is strictly increasing.
(b) Compute $g^{\prime}\left(-\frac{1}{2}\right)$, where g is the inverse of f.

Solution. Since $f(-1)=-\frac{1}{2}, g\left(-\frac{1}{2}\right)=-1$. Therefore, $g^{\prime}\left(-\frac{1}{2}\right)=1 / f^{\prime}(-1)=$ 1.
(14) 3. (a) Compute

$$
\frac{d}{d x} e^{-x} \sqrt{e^{2 x}+1}=-\frac{e^{-x}}{\sqrt{1+e^{2 x}}}
$$

(b) Evaluate

$$
\int_{0}^{2} x e^{x^{2}} d x=\frac{e^{4}-1}{2}
$$

(11) 4. Use logarithmic differentiation to compute y^{\prime}, where

$$
y=\sqrt{\frac{x(x+2)}{(2 x+1)(2 x+2)}}
$$

Solution.

$$
\ln y=\frac{1}{2}(\ln x+\ln (x+2)-\ln (2 x+1)-\ln (2 x+2))
$$

Therefore,

$$
y^{\prime} / y=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{x+2}-2 \frac{1}{2 x+1}-\frac{1}{x+1}\right)=\frac{2+2 x-x^{2}}{2 x(1+x)(x+2)(2 x+1)}
$$

so that

$$
y^{\prime}=\sqrt{\frac{x(x+2)}{(2 x+1)(2 x+2)}}\left[\frac{2+2 x-x^{2}}{2 x(1+x)(x+2)(2 x+1)}\right]
$$

(15) 5. Evaluate the following limits:

Solution. In both cases, use L'Hopital's rule.

$$
\text { (a) } \lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}=\lim _{t \rightarrow 0}\left[\frac{1}{2 \sqrt{1-t}}+\frac{1}{2 \sqrt{1+t}}\right]=1 \text {. }
$$

(b) $\lim _{x \rightarrow 1} x^{1 /(1-x)}$

First compute

$$
\lim _{x \rightarrow 1} \ln x^{1 /(1-x)}=\lim _{x \rightarrow 1} \frac{\ln x}{1-x}=\lim _{x \rightarrow 1} \frac{1 / x}{-1}=-1
$$

Therefore,

$$
\lim _{x \rightarrow 1} x^{1 /(1-x)}=e^{-1}
$$

(10) 6. (a) Solve $\log _{3} y+3 \log _{3} y^{2}=14$ for y.

Solution. This is equivalent to $\log _{3} y^{7}=14$, so $y=9$.
(b) Evaluate $\sin ^{-1}(-1 / \sqrt{2})$.

Solution. We want an angle θ so that $-\pi / 2 \leq \theta \leq \pi / 2$ and $\sin \theta=-1 / \sqrt{2}$, so $\theta=-\pi / 4$.
(12) 7. Compute

$$
\int_{-5}^{5} \frac{1}{x^{2}+25} d x
$$

Solution. Make the substitution $x=5 u$, so that $d x=5 d u$. Then

$$
\int_{-5}^{5} \frac{1}{x^{2}+25} d x=\frac{1}{5} \int_{-1}^{1} \frac{1}{u^{2}+1} d u=\left.\frac{1}{5} \tan ^{-1} u\right|_{-1} ^{1}=\frac{1}{5}\left(\frac{\pi}{4}-\frac{-\pi}{4}\right)=\frac{\pi}{10} .
$$

(13) 8. Prove the following: If $f(t)$ satisfies $f^{\prime}(t)=2 f(t)$ and $f(0)=3$, then $f(t)=3 e^{2 t}$.

Proof. Compute

$$
\frac{d}{d t} e^{-2 t} f(t)=e^{-2 t} f^{\prime}(t)-2 e^{-2 t} f(t)=e^{-2 t}\left[f^{\prime}(t)-f(t)\right]=0
$$

Therefore, $e^{-2 t} f(t)$ is constant. Its value at $t=0$ is 3 , so the constant is 3 . So, $f(t)=3 e^{2 t}$.

