Mathematics 275C - HW1 - Due Wednesday, April 13, 2011.

Problems from the text: Chapter 1 \# 1.31 (students who did this problem last Spring need not do it again); Chapter 2 \# 2.5, 2.7.

In the following problems, the chains are discrete time.
A. Consider the simple random walk on Z^{1} with transition probabilities $p(x, x+1)=p, p(x, x-1)=q$, where $p+q=1,0<p<1$.
(a) Find all stationary measures for this chain.
(b) Explain why this implies that the chain is transient if $p \neq \frac{1}{2}$.
B. Give an example of a Markov chain that has no nonzero stationary measure.
C. Suppose X_{n} is a null recurrent Markov chain. Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{k}(x, y)=0, \quad x, y \in S, \tag{1}
\end{equation*}
$$

using the following outline:
(a) Fix $x \in S$ and define

$$
\pi_{n}(y)=\frac{1}{n} \sum_{k=1}^{n} p_{k}(x, y) .
$$

Explain why there is a subsequence n_{i} so that $\pi(y)=\lim _{i \rightarrow \infty} \pi_{n_{i}}(y)$ exists for each y.
(b) What can you say about $\sum_{y} \pi(y)$ and $\pi(z)-\sum_{y} \pi(y) p(y, z)$?
(c) Conclude that $\pi \equiv 0$, and that (1) holds.

