Mathematics 275B - HW2 - Due Wednesday, February 4, 2009.
A. Problems from the text - to be posted on the web.

B1. (A Borel-Cantelli type lemma) (a) Prove that if W is a nonnegative integer valued random variable, then

$$
P(W \geq 1) \geq \frac{(E W)^{2}}{E W^{2}}
$$

(b) Suppose A_{n} are events satisfying (i) $\sum_{n} P\left(A_{n}\right)=\infty$ and (ii) for some $c>0$,

$$
P\left(A_{n} \cap A_{m}\right) \leq c P\left(A_{m}\right) P\left(A_{n-m}\right) \text { for } m<n .
$$

Show that $P\left(A_{n}\right.$ i.o. $)>0$. (Suggestion: Apply part (a) to $W=$ $\sum_{m=1}^{n} 1_{A_{m}}$.)

B2. Suppose that $S_{n}=\sum_{k=1}^{n} X_{k}$ is a random walk on the integers satisfying $E X_{k}=0$ and $E X_{k}^{2}<\infty$. Show that $P\left(S_{n^{2}}=0\right.$ i.o. $)=1$. (Suggestion: Use the local limit theorem.)

B3. Suppose S_{n} is a one dimensional random walk that satisfies

$$
S_{n} \rightarrow+\infty \quad \text { a.s. }
$$

(a) Show that $P\left(S_{n}>0\right.$ for all $\left.n \geq 1\right)>0$.
(b) Deduce from this that

$$
\sum_{n} P\left(S_{n} \leq 0, S_{n+1}>0\right)<\infty
$$

so that the expected number of times it crosses the origin is finite. (Suggestion: Consider the last time that $S_{n} \leq 0$.)

