Mathematics 171 - HW9 - Due Thursday, June 2, 2011.

Problems 8.20,8.21,8.25,8.27,8.28,8.30,8.32,8.35,8.37 on pages 203-206 plus the following:
Q. Let $p_{t}(x, y)$ be the transition probabilities for an irreducible continuous time Markov chain on a finite set $S=\{1, \ldots, N\}$ A collection of indistinguishable particles moving independently on S can be thought of as a Markov chain W_{t} on the set of configurations of particles on S. So, for example, if $N=4$, then $(5,7,1,0)$ corresponds to the configuration in which there are 5 particles at site 1, 7 particles at site 2, 1 particle at site 3 , and none at site 4.
(a) Suppose W_{0} has the distribution in which $\left\{W_{0}(i), 1 \leq i \leq N\right\}$ are independent, with $W_{0}(i)$ having the Poisson distribution with parameter $\lambda(i)$. Use the properties of thinning and superposition of Poisson random variables to determine the distribution of W_{t}.
(b) Using (a), find some stationary distributions for W_{t}.
(c) The chain W_{t} is not irreducible, since the total number of particles does not change. Find the closed irreducible classes for W_{t}.
(d) For each irreducible class, find the stationary distribution for the chain restricted to that class.

