Mathematics 171 - HW3 - Due Thursday, April 21, 2011.

Problems $10,12,18,24,31,32$ on pages $90-95$, plus the following:
E. Consider independent tosses of a fair die. Let $Z_{n} \in\{1,2,3,4,5,6\}$ be the result of the nth toss, and $X_{n+1}=\max \left(X_{n}, Z_{n}\right)$.
(a) What is the transition matrix for this Markov chain?
(b) Which states are transient, and which are recurrent?
(c) For each transient x and recurrent y, find $E_{x} T_{y}$, where T_{y} is the hitting time of y.
F. (a) Suppose $S=\{0,1,2, \ldots\}$, and for $n \geq 0$,

$$
p(n, n+1)=\frac{n+1}{n+3}, \quad p(n, 0)=\frac{2}{n+3} .
$$

Find the stationary distribution for this chain.
(b) What happens if the transition probabilities are

$$
p(n, n+1)=\frac{n+1}{n+2}, \quad p(n, 0)=\frac{1}{n+2}
$$

instead?

