Mathematics 171 - HW1 - Due Thursday, April 7, 2011.

Problems $1,2,3,4,5$ on pages 88 - 89 , plus the following:
A. Let y, z be distinct states. Show that $T=\min \left\{n \geq T_{y}: X_{n}=z\right\}$ is a stopping time.
B. Consider two urns A and B containing a total of N balls. Let X_{n} be the number of balls in urn A at time n. If $X_{n}=k$, an urn is chosen with probabilities $\frac{k}{N}$ and $1-\frac{k}{N}$ respectively, and a ball is chosen uniformly from all N balls. The chosen ball is placed in the chosen urn. Find the transition probabilities for this Markov chain.
C. Recall that a stochastic matrix is one that has non-negative entries and row sums equal to 1. Every such matrix corresponds to a Markov chain. Not every stochastic matrix can be the two-step transition matrix for a Markov chain. Show that a 2×2 stochastic matrix is the two-step transition matrix for a Markov chain if and only if the sum of its diagonal entries is at least one.
D. Suppose that X_{1}, X_{2}, \ldots are random variables taking the values 0 and 1, and satisfying

$$
P\left(X_{n}=1 \mid X_{1}=i_{1}, \ldots, X_{n-1}=i_{n-1}\right) \geq \epsilon
$$

for all $n \geq 1$ and all choices of $i_{1}, \ldots, i_{n-1} \in\{0,1\}$. Show that if $\epsilon>0$, then
(a) $P\left(X_{n}=1\right.$ for some $\left.n\right)=1$,
and
(b) $P\left(X_{n}=1\right.$ for infinitely many $\left.n\right)=1$.
(Suggestion: Look at the complementary events.)

