(15) 1. Let X_{n} be a Markov chain taking values in $[0,1]$ with the following transition mechanism: Conditional on the values of $X_{0} \ldots X_{n}$

$$
X_{n+1}= \begin{cases}a+(b-a) X_{n} & \text { with probability } X_{n} \\ c+(d-c) X_{n} & \text { with probability } 1-X_{n}\end{cases}
$$

where $a, b, c, d \in[0,1]$. Under what conditions is X_{n} a martingale? Explain.

Solution:

$$
\begin{aligned}
E\left(X_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right) & =\left(a+(b-a) X_{n}\right) X_{n}+\left(c+(d-c) X_{n}\right)\left(1-X_{n}\right) \\
& =c+(a+d-2 c) X_{n}+(b-a-d+c) X_{n}^{2},
\end{aligned}
$$

so $c=0, a+d=1, b=1$. (Note: This the type of martingale that appears in the Polya urn application.)
(20) 2. Suppose $N(t)$ is a rate λ Poisson process.
(a) Compute $E N(s) N(t+s)$.

Solution: $E N(s) N(t+s)=E N^{2}(s)+E N(s)[N(t+s)-N(s)]=\lambda s+$ $(\lambda s)^{2}+\lambda^{2} s t$.
(b) Find $P(N(2)=3 \mid N(6)=6)$.

Solution:

$$
P(N(2)=3 \mid N(6)=6)=P(N(2)=3, N(6)-N(2)=3) / P(N(6)=6)=\binom{6}{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{3} .
$$

(30) 3. Consider the Markov chain on $\{0,1, \ldots\}$ with transition probabilities

$$
p(k, k+1)=\frac{1}{k+1}, \quad p(k, 0)=\frac{k}{k+1}
$$

for $k \geq 0$.
(a) Find the stationary distribution for the chain.

Solution: The equations for π are $\pi(k)=\pi(k-1) / k$ for $k \geq 1$. Solving gives $\pi(k)=\pi(0) /(k!)$. So, the stationary distribution is the Poisson distribution with parameter 1.
(b) What is the value of $E_{0} T_{0}$?

Solution: $E_{0} T_{0}=1 / \pi(0)=e$.
(c) Let $u(k)=E_{k} T_{0}$. Find an equation that relates $u(k)$ to $u(k+1)$.

Solution: $u(k)=1+\frac{u(k+1)}{k+1}$.
(d) Compute $u(2)$.

Solution: Solving recursively gives $u(0)=e, u(1)=e-1, u(2)=2 e-4$. (Note: While I did not ask you to do it, you can easily check by induction that

$$
u(n)=n!\sum_{k=n}^{\infty} \frac{1}{k!}=\frac{P(X \geq n)}{P(X=n)}=\frac{1}{P(X=n \mid X \geq n)},
$$

where X is Poisson with parameter 1.)
(20) 4. Consider the Markov chain X_{n} on $\{0,1, \ldots\}$ with transition probabilities

$$
p(k, k+1)=p_{k}, \quad p(k, 0)=1-p_{k}
$$

for $k \geq 0$.
(a) For what choice(s) of the sequence p_{k} is X_{n} a martingale?

Solution: $E\left(X_{n+1} \mid X_{0}=k_{0}, \ldots, X_{n}=k\right)=(k+1) p_{k}$, so we must take $p_{k}=\frac{k}{k+1}$.
(b) For the choice(s) you found in (a), use the stopping time theorem to compute $P_{k}\left(T_{N}<T_{0}\right)$ for $0<k<N$.

Solution: Let $T=\min \left(T_{0}, T_{N}\right)$. Then $k=E_{k} X_{T}=N P\left(X_{T}=N\right)+$ $0 P\left(X_{T}=0\right)$, so $P_{k}\left(T_{N}<T_{0}\right)=\frac{k}{N}$.
(15) 5. Orders for three products A, B and C come in to a warehouse according to independent Poisson processes of rates per day of 1,2 , and 3 respectively.
(a) What is the expected total number of orders received in a given day.

Solution: $1+2+3=6$.
(b) What is the probability that the first order received after noon that day is for product B ?
Solution: $\frac{2}{1+2+3}=\frac{1}{3}$.
(c) What is the expected time between noon that day and the time of the first order for any of the products after noon.
Solution: The elapsed time is Exponential with parameter 6; hence the expected time is $\frac{1}{6}$.

