Mathematics 170A - HW9 - Due Tuesday, March 13, 2012.

Problems 11,15,16 on pages 188-190.
K_{1}. Let X be uniform on $[0,1]$ and $Y=4 X(1-X)$. Find the CDF and PDF of Y.
K_{2}. Let X be uniform on $[0,1]$ and $Y=-\log X$. What is the distribution of Y ?
K_{3}. The weight of a person chosen at random from a population is normally distributed with mean μ and variance σ^{2}. Suppose that $P(X \leq 160)=\frac{1}{2}$ and $P(X \leq 140)=\frac{1}{4}$.
(a) Find μ and σ.
(b) Find $P(X \geq 200)$.
(c) Among all people in the population weighing at least 200 pounds, what percentage weigh over 200 pounds?
K_{4}. Let X and Y be continuous random variables with joint distribution function $F(x, y)$ and joint density function $f(x, y)$. Find the joint distribution function $G(x, y)$ and joint density function $g(x, y)$ of the random variables $W=X^{2}$ and $Z=Y^{2}$.
K_{5}. Let X and Y be continuous random variables with joint density function

$$
f(x, y)= \begin{cases}\lambda^{2} e^{-\lambda y} & \text { if } 0 \leq x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal densities of X and Y.
(b) Find the joint distribution function of X and Y.
K_{6}. Let R and Θ be independent random variables. Suppose that Θ is uniform on $(-\pi, \pi)$ and R has PDF

$$
f(r)= \begin{cases}r e^{-r^{2} / 2} & \text { if } r>0 \\ 0 & \text { otherwise }\end{cases}
$$

Let $X=R \cos \Theta$ and $Y=R \sin \Theta$.
(a) Find the joint PDF of (X, Y).
(b) What are the distributions of X and Y ?
(c) Are X and Y independent? Explain.
K_{7}. Let $Y \mid \Lambda$ be exponentially distributed with parameter Λ, where Λ has the Gamma density with parameters $\alpha>0$ and $\beta>0$:

$$
f(x)= \begin{cases}\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

(Here

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

though you don't need to know that to do the problem.)
(a) Find the marginal density of Y.
(b) Find the conditional density of Λ given $Y=y$.

