Mathematics 170A - HW8 - Due Tuesday, March 6, 2012.

Problems 5,6,11,12 on pages 186-188.

 J_1 . A point (X, Y) is chosen uniformly from the unit square $[0, 1] \times [0, 1]$. Find the CDF and PDF of the random variable Z = X + Y.

 J_2 . Suppose X is exponentially distributed. If $P(X \ge .01) = \frac{1}{2}$, find a number x so that $P(X \ge x) = .9$.

 J_3 . Suppose X is uniform on [0, 2a]. Find the CDF of $Y = \min(X, a)$. J_4 . Suppose X has CDF

$$F(x) = \begin{cases} 0 & \text{if } x < 0; \\ \frac{x}{3} & \text{if } 0 \le x < 1; \\ \frac{x}{2} & \text{if } 1 \le x < 2; \\ 1 & \text{if } x \ge 2. \end{cases}$$

(a) Find $P(\frac{1}{2} \le X \le \frac{3}{2})$. (b) Find $P(\frac{1}{2} \le X \le 1)$. (c) Find $P(\frac{1}{2} \le X < 1)$. (d) Find $P(1 \le X \le \frac{3}{2})$. (e) Find P(1 < X < 2).

 J_5 . Suppose X has PDF f(x). Find the PDF of Y = |X|.

 J_6 . Suppose X has a symmetric density f(x) (so that f(-x) = f(x)). Find f if X^2 is exponentially distributed with parameter λ .