Mathematics 170A - HW8 - Due Tuesday, March 6, 2012.

Problems 5,6,11,12 on pages 186-188.
J_{1}. A point (X, Y) is chosen uniformly from the unit square $[0,1] \times$ $[0,1]$. Find the CDF and PDF of the random variable $Z=X+Y$.
J_{2}. Suppose X is exponentially distributed. If $P(X \geq .01)=\frac{1}{2}$, find a number x so that $P(X \geq x)=.9$.
J_{3}. Suppose X is uniform on $[0,2 a]$. Find the CDF of $Y=\min (X, a)$.
J_{4}. Suppose X has CDF

$$
F(x)= \begin{cases}0 & \text { if } x<0 ; \\ \frac{x}{3} & \text { if } 0 \leq x<1 ; \\ \frac{x}{2} & \text { if } 1 \leq x<2 \\ 1 & \text { if } x \geq 2\end{cases}
$$

(a) Find $P\left(\frac{1}{2} \leq X \leq \frac{3}{2}\right)$.
(b) Find $P\left(\frac{1}{2} \leq X \leq 1\right)$.
(c) Find $P\left(\frac{1}{2} \leq X<1\right)$.
(d) Find $P\left(1 \leq X \leq \frac{3}{2}\right)$.
(e) Find $P(1<X<2)$.
J_{5}. Suppose X has PDF $f(x)$. Find the PDF of $Y=|X|$.
J_{6}. Suppose X has a symmetric density $f(x)$ (so that $f(-x)=f(x)$). Find f if X^{2} is exponentially distributed with parameter λ.

