Mathematics 170A - HW7 - Due Tuesday, February 28, 2012.
Problems 38, 40, 41(a,b,c), 42(a,b) on pages 132-133 and problem 1 on page 184 .
I_{1}. Let X_{1} and X_{2} be independent geometric random variables with parameters p_{1} and p_{2} respectively.
(a) Find $P\left(X_{1} \geq X_{2}\right)$.
(b) Find $P\left(X_{1}=X_{2}\right)$.
I_{2}. Let X_{1} and X_{2} be independent geometric random variables with parameters p_{1} and p_{2} respectively. Let $D=X_{1}-X_{2}$ and $M=$ $\min \left(X_{1}, X_{2}\right)$.
(a) Find the joint PMF of D and M.
(b) Find the marginal PMF's of D and M.
(c) Are D and M independent? Explain.
I_{3}. Let X_{1} and X_{2} be independent Poisson random variables with parameters λ_{1} and λ_{2} respectively. What is the distribution of $S=$ $X_{1}+X_{2}$?
I_{4}. Let X_{1} and X_{2} be independent random variables that are uniformly distributed on $\{1, \ldots, n\}$. What is the PMF of $S=X_{1}+X_{2}$?
I_{5}. The random variables X_{1}, \ldots, X_{n} are independent, and X_{i} has mean μ (independent of i) and variance σ_{i}^{2} (depending on i). In a common statistical setting, μ is regarded as unknown, while the σ_{i} 's are known. It is proposed to estimate μ by the value of the random variable $S=\sum_{i} a_{i} X_{i}$ for some choice of constants a_{i}.
(a) Under what condition on the a_{i} 's is $E S=\mu$?
(b) Among all choices of the a_{i} 's that satisfy $E S=\mu$, find the one that minimizes $\operatorname{var}(S)$.

