Mathematics 170A - HW5 - Due Tuesday, February 14, 2012.
Problems 15,16,18,20,23 on pages 122-124.
G_{1}. Let n be a positive integer, and let

$$
p(k)= \begin{cases}c k & \text { if } k=1,2, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

(a) What choice of c makes this into a PMF?
(b) Compute the mean of this PMF.
G_{2}. Suppose X has the $B(4, p)$ distribution. Find $E \sin (\pi X / 2)$.
G_{3}. Let X be Poisson with parameter λ. Find $E(1+X)^{-1}$.
G_{4}. Suppose that X is a random variable that takes only nonnegative integer values. Show that

$$
E X=\sum_{k=1}^{\infty} P(X \geq k)
$$

(Suggestion: rewrite either side as a double sum, and interchange the order of summation. This interchange is permissible whenever the summands are nonnegative.)
G_{5}. Use the result in problem G_{4} above to compute the mean of the geometric distribution with parameter p.

