Mathematics 170A - HW4 - Due Tuesday, February 7, 2012.

Problems 55,59 on pages 68-69 and 2,4,6 on pages 119-120.
F_{1}. Let n be a positive integer, and let $p(k)=c 2^{k}$ for $k=1,2, \ldots, n$, and $p(k)=0$ otherwise. Find the value of c that makes p into a PMF.
F_{2}. Suppose X is a random variable with the following PMF:

$$
\begin{array}{ccccccccc}
k & -3 & -1 & 0 & 1 & 2 & 3 & 5 & 8 \\
p(k) & .1 & .2 & .15 & .2 & .1 & .15 & .05 & .05
\end{array}
$$

Compute the probabilities of the following events:
(a) $X>3$;
(b) $4 \leq X \leq 7$ or $X>9$;
(c) $3 \leq X \leq 5$ or $7 \leq X \leq 10$.
F_{3}. Two balls are chosen at random from a box containing 12 balls, numbered $1,2, \ldots, 12$. Let X be the larger of the two numbers obtained. Compute the PMF of X, if the sampling is done
(a) with replacement;
(b) without replacement.
F_{4}. Suppose X has the geometric distribution with parameter p, and n is a positive integer. Let $Y=\min (X, n)$ and $Z=X^{2}$.
(a) Find the PMF of Y.
(b) Find the PMF of Z.
F_{5}. (a) Give a combinatorial explanation of the identity

$$
\binom{n+m}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i} .
$$

(b) What does this identity say about the hypergeometric PMF?

