Mathematics 170A – HW4 – Due Tuesday, February 7, 2012.

Problems 55,59 on pages 68-69 and 2,4,6 on pages 119-120.

 F_1 . Let n be a positive integer, and let $p(k) = c2^k$ for k = 1, 2, ..., n, and p(k) = 0 otherwise. Find the value of c that makes p into a PMF.

 F_2 . Suppose X is a random variable with the following PMF:

Compute the probabilities of the following events:

(a) X > 3; (b) $4 \le X \le 7$ or X > 9; (c) $3 \le X \le 5$ or $7 \le X \le 10$.

 F_3 . Two balls are chosen at random from a box containing 12 balls, numbered 1, 2, ..., 12. Let X be the larger of the two numbers obtained. Compute the PMF of X, if the sampling is done

(a) with replacement;

(b) without replacement.

 F_4 . Suppose X has the geometric distribution with parameter p, and n is a positive integer. Let $Y = \min(X, n)$ and $Z = X^2$.

(a) Find the PMF of Y.

(b) Find the PMF of Z.

 F_5 . (a) Give a combinatorial explanation of the identity

$$\binom{n+m}{k} = \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i}.$$

(b) What does this identity say about the hypergeometric PMF?