1. (15) The continuous random variable X has PDF

$$f(x) = \begin{cases} cx(1-x) & \text{if } 0 < x < 1; \\ 0 & \text{otherwise.} \end{cases}$$

(a) Find c.

Solution: $\int_0^1 x(1-x)dx = \frac{1}{6}$, so c = 6.

(b) Find EX.

Solution: $EX = \int_0^1 6x^2(1-x)dx = \frac{1}{2}$, or use symmetry.

(c) Find Var(X).

Solution: $EX^2 = \int_0^1 6x^3(1-x)dx = \frac{3}{10}$, so $Var(X) = \frac{1}{20}$.

2. (15) State whether each of the following is true or false. No explanation is required. (Scoring: +3 for a correct answer, -1 for an incorrect answer, 0 for no answer.)

(a) If X and Y are independent random variables with finite second moments, then they are uncorrelated.

Solution: True.

(b) If X and Y are uncorrelated random variables, then they are independent.

Solution: False.

(c) If X is a nonnegative random variable, then $EX < \infty$.

Solution: False.

(d) There exists a random variable with EX = 5, $EX^2 = 2$.

Solution: False.

(e) There exists a random variable with EX = 2, $EX^2 = 5$.

Solution: True.

3. (15) Find the PMF of X + Y where X and Y are independent geometric random variables with parameters p and q respectively, when

(a) p = q.

Solution:

$$P(X + Y = n) = \sum_{k=1}^{n-1} P(X = k) P(Y = n - k)$$
$$= \sum_{k=1}^{n-1} p^2 (1-p)^{n-2} = (n-1)p^2 (1-p)^{n-2}.$$

(b) $p \neq q$.

Solution:

$$P(X+Y=n) = \sum_{k=1}^{n-1} P(X=k)P(Y=n-k) = \sum_{k=1}^{n-1} pq(1-p)^{k-1}(1-q)^{n-k-1}$$
$$= \frac{pq}{p-q} [(1-q)^{n-1} - (1-p)^{n-1}].$$

4. (15) 72 people each toss a fair die twice. Let X be the number of people who get snake eyes (i.e., a 1 on each die).

(a) What is P(X = 3)?

Solution: X is $B(72, \frac{1}{36})$, so

$$P(X=3) = {\binom{72}{3}} \left(\frac{1}{36}\right)^3 \left(\frac{35}{36}\right)^{69}.$$

(b) Use the Poisson approximation to approximate P(X = 3).

Solution: X is approximately Poisson (2), so $P(X = 3) \sim e^{-2}2^3/3!$.

5. (20) Let X_1, X_2, \ldots be independent random variables with the $B(5, \frac{1}{2})$ distribution, and T be a random variable independent of the X_i 's with the geometric distribution with parameter p. Let $S_n = X_1 + X_2 + \cdots + X_n$, so $S_T = X_1 + X_2 + \cdots + X_T$.

(a) What is the distribution of S_n ?

Solution: $B(5n, \frac{1}{2})$.

(b) What is EX_i ?

Solution: $\frac{5}{2}$.

(c) Find $E(S_T \mid T = n)$.

Solution: $\frac{5}{2}n$.

(d) Find ES_T .

Solution:

$$ES_T = \sum_{n=1}^{\infty} E(S_T \mid T = n) P(T = n) = \sum_{n=1}^{\infty} \frac{5}{2} n P(T = n) = \frac{5}{2} ET = \frac{5}{2p}.$$

6. (20) Let X_1, X_2, \ldots be i.i.d. Bernoulli random variables with parameter p (i.e., they are independent and satisfy $P(X_i = 1) = p, P(X_i = 0) = 1 - p$). Define $Y_i = X_i X_{i+1}$ and $S_n = Y_1 + Y_2 + \cdots + Y_n$.

(a) Find EY_i .

Solution: $EY_i = EX_i EX_{i+1} = p^2$.

(b) Find EY_iY_j for all pairs $i, j \ge 1$.

Solution:

$$EY_iY_j = \begin{cases} p^2 & \text{if } i = j; \\ p^3 & \text{if } |i - j| = 1; \\ p^4 & \text{otherwise.} \end{cases}$$

(c) Find ES_n .

Solution: $ES_n = np^2$.

(d) Find $\operatorname{Var}(S_n)$.

Solution: Since Y_i and Y_j are independent for |i - j| > 1,

$$\operatorname{Var}(S_n) = \sum_{1 \le i, j \le n} \operatorname{Cov}(Y_i, Y_j) = n \operatorname{Var}(Y_1) + 2(n-1) \operatorname{Cov}(Y_1, Y_2)$$
$$= np^2(1-p^2) + 2(n-1)p^3(1-p) = p^2(1-p)[n(1+3p)-2p].$$