T. Liggett Mathematics 170A - Midterm 2 Solutions March 7, 2012

1. (15) The continuous random variable X has PDF

$$
f(x)= \begin{cases}c x(1-x) & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find c.

Solution: $\int_{0}^{1} x(1-x) d x=\frac{1}{6}$, so $c=6$.
(b) Find $E X$.

Solution: $E X=\int_{0}^{1} 6 x^{2}(1-x) d x=\frac{1}{2}$, or use symmetry.
(c) Find $\operatorname{Var}(X)$.

Solution: $E X^{2}=\int_{0}^{1} 6 x^{3}(1-x) d x=\frac{3}{10}$, so $\operatorname{Var}(X)=\frac{1}{20}$.
2. (15) State whether each of the following is true or false. No explanation is required. (Scoring: +3 for a correct answer, -1 for an incorrect answer, 0 for no answer.)
(a) If X and Y are independent random variables with finite second moments, then they are uncorrelated.
Solution: True.
(b) If X and Y are uncorrelated random variables, then they are independent.
Solution: False.
(c) If X is a nonnegative random variable, then $E X<\infty$.

Solution: False.
(d) There exists a random variable with $E X=5, E X^{2}=2$.

Solution: False.
(e) There exists a random variable with $E X=2, E X^{2}=5$.

Solution: True.
3. (15) Find the PMF of $X+Y$ where X and Y are independent geometric random variables with parameters p and q respectively, when
(a) $p=q$.

Solution:

$$
\begin{aligned}
P(X+Y=n) & =\sum_{k=1}^{n-1} P(X=k) P(Y=n-k) \\
& =\sum_{k=1}^{n-1} p^{2}(1-p)^{n-2}=(n-1) p^{2}(1-p)^{n-2} .
\end{aligned}
$$

(b) $p \neq q$.

Solution:

$$
\begin{aligned}
P(X+Y=n) & =\sum_{k=1}^{n-1} P(X=k) P(Y=n-k)=\sum_{k=1}^{n-1} p q(1-p)^{k-1}(1-q)^{n-k-1} \\
& =\frac{p q}{p-q}\left[(1-q)^{n-1}-(1-p)^{n-1}\right] .
\end{aligned}
$$

4. (15) 72 people each toss a fair die twice. Let X be the number of people who get snake eyes (i.e., a 1 on each die).
(a) What is $P(X=3)$?

Solution: X is $\mathrm{B}\left(72, \frac{1}{36}\right)$, so

$$
P(X=3)=\binom{72}{3}\left(\frac{1}{36}\right)^{3}\left(\frac{35}{36}\right)^{69}
$$

(b) Use the Poisson approximation to approximate $P(X=3)$.

Solution: X is approximately Poisson (2), so $P(X=3) \sim e^{-2} 2^{3} / 3!$.
5. (20) Let X_{1}, X_{2}, \ldots be independent random variables with the $B\left(5, \frac{1}{2}\right)$ distribution, and T be a random variable independent of the X_{i} 's with the geometric distribution with parameter p. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, so $S_{T}=X_{1}+X_{2}+\cdots+X_{T}$.
(a) What is the distribution of S_{n} ?

Solution: $B\left(5 n, \frac{1}{2}\right)$.
(b) What is $E X_{i}$?

Solution: $\frac{5}{2}$.
(c) Find $E\left(S_{T} \mid T=n\right)$.

Solution: $\frac{5}{2} n$.
(d) Find $E S_{T}$.

Solution:

$$
E S_{T}=\sum_{n=1}^{\infty} E\left(S_{T} \mid T=n\right) P(T=n)=\sum_{n=1}^{\infty} \frac{5}{2} n P(T=n)=\frac{5}{2} E T=\frac{5}{2 p} .
$$

6. (20) Let X_{1}, X_{2}, \ldots be i.i.d. Bernoulli random variables with parameter p (i.e., they are independent and satisfy $\left.P\left(X_{i}=1\right)=p, P\left(X_{i}=0\right)=1-p\right)$. Define $Y_{i}=X_{i} X_{i+1}$ and $S_{n}=Y_{1}+Y_{2}+\cdots+Y_{n}$.
(a) Find $E Y_{i}$.

Solution: $E Y_{i}=E X_{i} E X_{i+1}=p^{2}$.
(b) Find $E Y_{i} Y_{j}$ for all pairs $i, j \geq 1$.

Solution:

$$
E Y_{i} Y_{j}= \begin{cases}p^{2} & \text { if } i=j \\ p^{3} & \text { if }|i-j|=1 \\ p^{4} & \text { otherwise }\end{cases}
$$

(c) Find $E S_{n}$.

Solution: $E S_{n}=n p^{2}$.
(d) Find $\operatorname{Var}\left(S_{n}\right)$.

Solution: Since Y_{i} and Y_{j} are independent for $|i-j|>1$,

$$
\begin{aligned}
\operatorname{Var}\left(S_{n}\right) & =\sum_{1 \leq i, j \leq n} \operatorname{Cov}\left(Y_{i}, Y_{j}\right)=n \operatorname{Var}\left(Y_{1}\right)+2(n-1) \operatorname{Cov}\left(Y_{1}, Y_{2}\right) \\
& =n p^{2}\left(1-p^{2}\right)+2(n-1) p^{3}(1-p)=p^{2}(1-p)[n(1+3 p)-2 p] .
\end{aligned}
$$

