(12) 1. Suppose X is normally distributed with mean 2 and variance 9 .
(a) Find $P(X \geq 7)$.

Solution:

$$
P(X \geq 7)=P\left(\frac{X-2}{3} \geq \frac{5}{3}\right)=1-\Phi(5 / 3)=1-.9525=.0475
$$

(b) Find a number c so that $P(X \leq c)=.10$.

$$
.10=P(X \leq c)=P\left(\frac{X-2}{3} \leq \frac{c-2}{3}\right)=\Phi((c-2) / 3)
$$

So, choose c so that $(c-2) / 3=-.8159$, i.e., $c=-.4477$.

Solution:

(20) 2. A point (X, Y) is chosen uniformly from the square $[-1,1]^{2}$.
(a) Compute $P\left(Y>X^{2}\right)$.

Solution:

$$
P\left(Y>X^{2}\right)=\frac{1}{4} \int_{-1}^{1}\left(1-x^{2}\right) d x=\frac{1}{3}
$$

(b) Find the distribution function (CDF) of $Z=|X|+|Y|$.

Solution:

$$
P(Z \leq z)= \begin{cases}0 & \text { if } z \leq 0 \\ \frac{1}{2} z^{2} & \text { if } 0 \leq z \leq 1 \\ -1+2 z-\frac{1}{2} z^{2} & \text { if } 1 \leq z \leq 2 \\ 1 & \text { if } z \geq 2\end{cases}
$$

(c) Find the density function (PDF) of Z.

Solution:

$$
f(z)= \begin{cases}z & \text { if } 0 \leq z \leq 1 \\ 2-z & \text { if } 1 \leq z \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(15) 3. Find the PMF of $X+Y$ where X and Y are independent geometric random variables with parameters p and q respectively, when
(a) $p=q$.

Solution:

$$
\begin{aligned}
P(X+Y=n) & =\sum_{k=1}^{n-1} P(X=k) P(Y=n-k) \\
& =\sum_{k=1}^{n-1} p^{2}(1-p)^{n-2}=(n-1) p^{2}(1-p)^{n-2} .
\end{aligned}
$$

(b) $p \neq q$.

Solution:

$$
\begin{aligned}
P(X+Y=n) & =\sum_{k=1}^{n-1} P(X=k) P(Y=n-k)=\sum_{k=1}^{n-1} p q(1-p)^{k-1}(1-q)^{n-k-1} \\
& =\frac{p q}{p-q}\left[(1-q)^{n-1}-(1-p)^{n-1}\right] .
\end{aligned}
$$

(20) 4. Suppose X is a continuous random variable with PDF

$$
f(x)= \begin{cases}6 x(1-x) & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Then X divides the unit interval $[0,1]$ into two parts. Let $Y \geq 1$ be the ratio of the longer part to the shorter part.
(a) Find $P(Y \leq 2)$.

Solution:

$$
P(Y \leq 2)=P\left(\frac{1}{3} \leq X \leq \frac{2}{3}\right)=\frac{13}{27}
$$

(b) Find the PDF of Y.

Solution: For $y \geq 1$,
$P(Y \leq y)=P\left(\frac{1}{y+1} \leq X \leq \frac{y}{y+1}\right)=\int_{\frac{1}{y+1}}^{\frac{y}{y+1}} f(x) d x=\frac{(y-1)\left(y^{2}+4 y+1\right)}{(y+1)^{3}}$.
(c) Find $E Y$.

Solution:

$$
E Y=\int_{0}^{\infty} P(Y \geq y) d y=1+\int_{1}^{\infty} \frac{2(3 y+1)}{(y+1)^{3}} d y=\frac{7}{2}
$$

(18) 5. Short answer questions. No explanation necessary.
(a) Suppose X has the $N(-1,9)$ distribution. What is the distribution of $2 X+5$?

Solution: $N(3,36)$.
(b) Suppose X satisfies $E X=-5$ and $E X^{2}=25$. What can you say about X ?

Solution: $P(X=-5)=1$.
(c) What value of a minimizes $E(X-a)^{2}$?

Solution: $a=E X$.
(d) If ($X_{1}, X_{2}, X_{3}, X_{4}$) has the multinomial distribution with parameters n and $p_{1}=\frac{1}{6}, p_{2}=\frac{1}{3}, p_{3}=\frac{1}{4}, p_{4}=\frac{1}{4}$, what is the distribution of $X_{1}+X_{3}$?

Solution: $B\left(n, \frac{5}{12}\right)$.
(e) Suppose the events A and B are both disjoint and independent. What can you conclude about A and B ?

Solution: $P(A)=0$ or $P(B)=0$.
(f) If (X, Y) is uniformly distributed on a two-dimensional connected region G, and X and Y are independent, what can you conclude about G ?

Solution: G is a rectangle.
(15) 6. Suppose that X has the $N(0,1)$ distribution.
(a) Find the density function of $|X|$.

Solution: For $x \geq 0, P(X \leq x)=\Phi(x)-\Phi(-x)$, so the density is

$$
\sqrt{\frac{2}{\pi}} e^{-\frac{1}{2} x^{2}}, x \geq 0
$$

(b) Compute $E e^{X}$.

Solution:

$$
E e^{X}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{x-\frac{1}{2} x^{2}} d x=\frac{1}{\sqrt{2 \pi}} \sqrt{e} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-1)^{2}} d x=\sqrt{e}
$$

(20) 7. Consider a collection of n married couples. A sample of size $m \leq 2 n$ is taken from the $2 n$ people without replacement. Let X be the number of married couples in the sample.
(a) Find the PMF of X.

Solution:

$$
P(X=k)=\frac{\binom{n}{k}\binom{n-k}{m-2 k} 2^{m-2 k}}{\binom{2 n}{m}}
$$

(b) Use indicator random variables to compute $E X$.

Solution: For $1 \leq i \leq n$, let

$$
X= \begin{cases}1 & \text { if the } i \text { th couple is in the sample } \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
P\left(X_{i}=1\right)=\frac{\binom{2 n-2}{m-2}}{\binom{2 n}{m}}=\frac{m(m-1)}{2 n(2 n-1)},
$$

so

$$
E X=\frac{m(m-1)}{2(2 n-1)}
$$

(20) 8. Let X_{1}, X_{2}, \ldots be i.i.d. Bernoulli random variables with parameter p (i.e., they are independent and satisfy $\left.P\left(X_{i}=1\right)=p, P\left(X_{i}=0\right)=1-p\right)$. Define $Y_{i}=X_{i} X_{i+1} X_{i+2}$ and $S_{n}=Y_{1}+Y_{2}+\cdots+Y_{n}$.
(a) Find $E Y_{i}$.

Solution: $E Y_{i}=p^{3}$.
(b) Find $E Y_{i} Y_{j}$ for all pairs $i, j \geq 1$.

Solution:

$$
E Y_{i} Y_{j}= \begin{cases}p^{3} & \text { if } i=j \\ p^{4} & \text { if }|i-j|=1 \\ p^{5} & \text { if }|i-j|=2 \\ p^{6} & \text { otherwise }\end{cases}
$$

(c) Find $E S_{n}$.

Solution: $E S_{n}=n p^{3}$.
(d) Find $\operatorname{Var}\left(S_{n}\right)$.

Solution: $\operatorname{Var}\left(S_{n}\right)=n p^{3}\left(1-p^{3}\right)+2(n-1) p^{4}\left(1-p^{2}\right)+2(n-2) p^{5}(1-p)$.
(20) 9. The joint probability density function of (X, Y) is given by

$$
f(x, y)= \begin{cases}c(x+y)^{2} & \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of c.

Solution: $c=\frac{6}{7}$.
(b) Are X and Y independent? Explain.

Solution: No, since $f(x, y)$ cannot be written as the product of a function of x and a function of y.
(c) Let $U=X+Y$ and $V=X-Y$. Find the joint density function $g(u, v)$ of (U, V). Be sure to specify the values of (u, v) for which $g(u, v)>0$.

Solution: $g(u, v)=\frac{3}{7} u^{2}$ for (u, v) in the square with vertices

$$
(0,0),(2,0),(1,1),(1,-1)
$$

(15) 10. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent continuous random variables, each having distribution function $F(x)$ and density function $f(x)$. Let $Y=\max \left(X_{1}, \ldots, X_{n}\right)$.
(a) Find the distribution function of Y.

Solution: $P(Y \leq y)=P\left(X_{1} \leq y, \ldots, X_{n} \leq y\right)=[F(y)]^{n}$.
(b) Find the density function of Y.

Solution: The density function $g(y)$ of Y is

$$
g(y)=\frac{d}{d y}[F(y)]^{n}=n[F(y)]^{n-1} f(y) .
$$

(15) 11. Box I contains 2 white balls and 2 black balls, box II contains 2 white balls and 1 black ball, and box III contains 1 white ball and 3 black balls. One of the three boxes is chosen at random, and one ball is drawn from it.
(a) What is the probability that the ball drawn is white?

Solution: Let $A=\{$ the ball drawn is white $\}$. Then $P(A)=$
$P(A \mid I) P(I)+P(A \mid I I) P(I I)+P(A \mid I I I) P(I I I)=\frac{1}{3}\left[\frac{1}{2}+\frac{2}{3}+\frac{1}{4}\right]=\frac{17}{36}$.
(b) Given that the ball drawn is white, what is the probability that the first box was chosen?

Solution:

$$
P(I \mid A)=\frac{P(A \mid I) P(I)}{P(A)}=\frac{6}{17} .
$$

(10) 12. Two fair dice are thrown, and let S be sum of the outcomes. Consider the events

$$
A=\{S=2,3, \text { or } 4\}, \quad B=\{S=3,5, \text { or } 7\}, \quad C=\{S=4,7,8, \text { or } 9\} .
$$

(a) Are A and B independent? Explain.

Solution: Yes, since $P(A)=\frac{1}{6}, P(B)=\frac{1}{3}, P(A \cap B)=\frac{1}{18}=P(A) P(B)$.
(b) Are A, B, C independent? Explain.

Solution: No, since $A \cap B \cap C=\emptyset$, so $0=P(A \cap B \cap C) \neq P(A) P(B) P(C)$.

