(25) 1. (a) State Fatou's Lemma.

See Royden, page 86.
(b) State the Bounded Convergence Theorem.

See Royden, page 84.
(c) Use Fatou's Lemma to prove the Bounded Convergence Theorem.

Suppose $\left|f_{n}\right| \leq M$ for each n. Then $M+f_{n}$ and $M-f_{n}$ are nonnegative functions. By Fatou,
$M m(E)-\int_{E} f=\int_{E}(M-f) \leq \liminf _{n \rightarrow \infty} \int_{E}\left(M-f_{n}\right)=M m(E)-\limsup _{n \rightarrow \infty} \int_{E} f_{n}$
and
$M m(E)+\int_{E} f=\int_{E}(M+f) \leq \liminf _{n \rightarrow \infty} \int_{E}\left(M+f_{n}\right)=M m(E)+\liminf _{n \rightarrow \infty} \int_{E} f_{n}$.
Since $m(E)<\infty$,

$$
\limsup _{n \rightarrow \infty} \int_{E} f_{n} \leq \int_{E} f \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n}
$$

so

$$
\int_{E} f=\lim _{n \rightarrow \infty} \int_{E} f_{n}
$$

(20) 2. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{a x} d x
$$

for each real a. Justify each of your steps.
The integrand converges to $e^{(a-1) x} 1_{[0, \infty)}(x)$ for each x. Since $1-t \leq e^{-t}$ for all t, the integrand is dominated by $e^{(a-1) x} 1_{[0, \infty)}(x)$, which is integrable for $a<1$. By the Dominated Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{a x} d x=\int_{0}^{\infty} e^{(a-1) x} d x=\frac{1}{1-a}
$$

for $a<1$. Since

$$
\int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{a x} d x
$$

is increasing in a, it follows that

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{a x} d x=\infty
$$

for $a \geq 1$.
(20) 3. Suppose that f is increasing on $[0,1]$. Using the fact that f is a.e. differentiable, show that

$$
\int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

Let $f(x)=f(1)$ for $x \geq 1$, and then

$$
f_{n}(x)=n\left[f\left(x+\frac{1}{n}\right)-f(x)\right]
$$

Note that $f_{n} \geq 0, f_{n} \rightarrow f^{\prime}$ a.e., and

$$
\int_{0}^{1} f_{n}(x) d x=n \int_{1}^{1+\frac{1}{n}} f(x) d x-n \int_{0}^{\frac{1}{n}} f(x) d x \leq f(1)-f(0)
$$

Therefore, the statement follows from Fatou.
(20) 4. Consider the system of equations

$$
x+x y z=u, \quad y+x y=v, \quad z+2 x+3 z^{2}=w .
$$

Can these be solved locally near ($0,0,0$)? Explain.
Let $f(x, y, z)=\left(x+x y z, y+x y=v, z+2 x+3 z^{2}\right)$. Then

$$
f^{\prime}(0,0,0)=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which is invertible. So, the inverse function theorem guarantees local solvability.
(15) 5. Suppose that f is integrable on $[0,1]$, and $\int_{A} f(x) d x=0$ for every measurable subset A of $[0,1]$. Show that $f=0$ a.e. on $[0,1]$.

Let $A_{n}=\left\{x: f(x) \geq \frac{1}{n}\right\}$. Then

$$
m\left(A_{n}\right) \leq n \int_{A_{n}} f(x) d x=0
$$

By countable subadditivity,

$$
m(\{x: f(x)>0\}) \leq \sum_{n} m\left(A_{n}\right)=0
$$

so $f \leq 0$ a.e. Similarly, $f \geq 0$ a.e.
(25) 6. Consider the integration by parts formula

$$
\begin{equation*}
\int_{a}^{b} F(x) G^{\prime}(x) d x=-\int_{a}^{b} F^{\prime}(x) G(x) d x+F(b) G(b)-F(a) G(a) \tag{1}
\end{equation*}
$$

(a) Give an example of continuous functions of bounded variation F and G for which (1) is false.

Let $F(x)=G(x)=$ the Cantor function, with $a=0, b=1$.
(b) Show that the product of absolutely continuous functions is absolutely continuous.

Suppose that F and G are absolutely continuous. Then they are continuous on $[a, b]$ and hence bounded, say by M. Given $\epsilon>0$, let $\delta>0$ be the smaller of the values that appear in the definition of absolute continuity for F and G for that ϵ. If $\left[x_{i}, y_{i}\right], 1 \leq i \leq n$, are disjoint with $\sum_{i}\left(y_{i}-x_{i}\right)<\delta$, then

$$
\sum_{i}\left|F\left(y_{i}\right)-F\left(x_{i}\right)\right|<\epsilon \text { and } \sum_{i}\left|G\left(y_{i}\right)-G\left(x_{i}\right)\right|<\epsilon .
$$

It follows that

$$
\begin{aligned}
& \sum_{i}\left|F\left(y_{i}\right) G\left(y_{i}\right)-F\left(x_{i}\right) G\left(x_{i}\right)\right| \leq \\
& \quad \sum_{i}\left|F\left(y_{i}\right)\right| G\left(y_{i}\right)-G\left(x_{i}\right)\left|+\sum_{i}\right| F\left(y_{i}\right)-F\left(x_{i}\right)\left|G\left(x_{i}\right)\right| \leq 2 M \epsilon
\end{aligned}
$$

Now replace ϵ by $\epsilon /(2 M)$.
(c) Prove (1) for absolutely continuous F and G.

By part (b), $F G$ is absolutely continuous. Therefore,

$$
\int_{a}^{b} \frac{d}{d x}[F(x) G(x)] d x=F(b) G(b)-F(a) G(a)
$$

Now apply the product rule.
(10) 7. Compute the total variation $T_{0}^{2 \pi} f$ and positive variation $P_{0}^{2 \pi} f$ of the function $f(x)=\sin x$ on the interval $[0,2 \pi]$.
f is increasing on $\left[0, \frac{\pi}{2}\right]$, decreasing on $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$, and increasing on $\left[\frac{3 \pi}{2}, 2 \pi\right]$. The max and min values on $[0,2 \pi]$ are ± 1. Therefore $T_{0}^{2 \pi} f=4$ and $P_{0}^{2 \pi} f=2$.
(20) 8. Suppose $f: X \rightarrow X$, where (X, d) is a metric space, satisfies

$$
d(f(x), f(y)) \leq c d(x, y) \quad \text { for all } \quad x, y \in X
$$

(a) Show that if $c=\frac{1}{2}$, the sequence defined by $x_{1} \in X$ and $x_{n+1}=f\left(x_{n}\right)$ for $n \geq 1$ is Cauchy.

See Rudin, page 220.
(b) Give an example to show that the statement in (a) is false if $c=1$.
$X=R^{1}, f(x)=x+1$.
(25) 9 . Let l_{1} be the space of all sequences $f=(f(1), f(2), \ldots)$ so that

$$
\|f\|=\sum_{k=1}^{\infty}|f(k)|<\infty
$$

(a) Suppose that $f_{n} \in l_{1}$ for each n, and that there is a constant C so that $\left\|f_{n}\right\| \leq C$ for each n. Show that there is a subsequence $f_{n_{i}}$ so that $f(k)=\lim _{i \rightarrow \infty} f_{n_{i}}(k)$ exists for each k, and that the resulting f is in l_{1}.

For each k, the set $\left\{f_{n}(k), n \geq 1\right\}$ is bounded by C. Therefore, the subsequence can be constructed by a diagonal argument. Then

$$
\sum_{k=1}^{m}|f(k)|=\lim _{i} \sum_{k=1}^{m}\left|f_{n_{i}}(k)\right| \leq C
$$

for each m, so $\|f\| \leq C$.
(b) Prove or disprove that the subsequence in (a) can always be chosen so that $f_{n_{i}} \rightarrow f$ in l_{1}.

This is false. Example: $f_{n}(n)=1, f_{n}(k)=0$ for all $k \neq n$. Then $\left\|f_{n}\right\|=1$ for each n, but for any subsequence, the coordinate-wise limit $f=0$.
(c) Prove that l_{1} is complete.

Suppose f_{n} is Cauchy in l_{1}. Then for each $k, f_{n}(k)$ is a Cauchy sequence in R^{1}, so $f(k)=\lim _{n \rightarrow \infty} f_{n}(k)$ exists. Then for each l,

$$
\sum_{k=1}^{l}\left|f(k)-f_{n}(k)\right|=\lim _{m \rightarrow \infty} \sum_{k=1}^{l}\left|f_{m}(k)-f_{n}(k)\right|,
$$

so

$$
\left\|f-f_{n}\right\| \leq \limsup _{m \rightarrow \infty}\left\|f_{m}-f_{n}\right\| .
$$

Now let $n \rightarrow \infty$.
(20) 10. (a) Suppose $f_{n}:[0,1] \rightarrow R^{1}$ is measurable for each $n=1,2,3, \ldots$. Show that

$$
E=\left\{x \in[0,1]: \lim _{n \rightarrow \infty} f_{n}(x) \text { exists and is finite }\right\}
$$

is measurable.
Write

$$
\begin{aligned}
E & =\left\{x \in[0,1]:\left\{f_{n}(x), n \geq 1\right\} \text { is Cauchy }\right\} \\
& =\bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \bigcap_{m=N}^{\infty}\left\{x \in[0,1]:\left|f_{n}(x)-f_{m}(x)\right| \leq \frac{1}{k}\right\} .
\end{aligned}
$$

(b) Give an example of an uncountable family $f_{\alpha}:[0,1] \rightarrow R^{1}, \alpha \in[0,1]$, of measurable functions so that the function

$$
f(x)=\sup _{\alpha} f_{\alpha}(x)
$$

is not measurable.
Example: Let $P \subset[0,1]$ be non-measurable, and

$$
f_{\alpha}(x)= \begin{cases}1 & \text { if } x=\alpha \in P \\ 0 & \text { otherwise }\end{cases}
$$

