T. Liggett Mathematics 131BH - Final Exam Solutions March 17, 2010
(15) 1. For which real values of x does the series

$$
\sum_{n=1}^{\infty} \frac{(n x)^{n}}{n!}
$$

converge? Explain.
By Stirling's formula, $n!\sim n^{n} e^{-n} \sqrt{2 \pi n}$, so

$$
\frac{(n x)^{n}}{n!} \sim \frac{(x e)^{n}}{\sqrt{2 \pi n}} .
$$

It follows that the series converges for $|x|<e^{-1}$, and diverges for $|x|>e^{-1}$ and for $x=e^{-1}$. The series converges for $x=-e^{-1}$ by the alternating series test. To check this, one needs to know that

$$
a_{n}=\frac{\left(n e^{-1}\right)^{n}}{n!}
$$

is decreasing to zero. The inequality $a_{n} \geq a_{n+1}$ is equivalent to $n \log \left(1+\frac{1}{n}\right) \leq$ 1. This follows from $\log (1+x) \leq x$ for $x \geq 0$. (Note: $a_{n} \sim 1 / \sqrt{n}$ does not imply that $\sum(-1)^{n} a_{n}$ converges. For an example in which it diverges, take $a_{n}=1 / \sqrt{n}$ for n odd and $a_{n}=(1 / \sqrt{n})+(1 / n)$ for n even.)
(15) 2. Use power series to compute

$$
\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}
$$

for $a>0$.
For $x \neq 0$, write

$$
\frac{a^{x}-1}{x}=\frac{e^{x \log a}-1}{x}=\log a \sum_{n=1}^{\infty} \frac{(x \log a)^{n-1}}{n!} .
$$

Therefore, the limit is $\log a$.
(20) 3. Suppose f is a real-valued function on $[-1,1]$ with a continuous derivative. Prove that there exist polynomials $p_{n}(x)$ so that $p_{n} \rightarrow f$ and $p_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on $[-1,1]$. (You may use the Weierstrass Theorem.)

Choose polynomials q_{n} so that $q_{n} \rightarrow f^{\prime}$ uniformly on $[-1,1]$, and let

$$
p_{n}(x)=f(-1)+\int_{-1}^{x} f^{\prime}(t) d t .
$$

(20) 4. Suppose f is Riemann integrable on compact subsets of $[0, \infty)$.
(a) Show that $\lim _{x \rightarrow \infty} f(x)=0$ implies

$$
\lim _{t \downarrow 0} t \int_{0}^{\infty} e^{-t x} f(x) d x=0
$$

Given $\epsilon>0$, choose M so that $|f(x)|<\epsilon$ for $x \geq M$. Then

$$
\left|t \int_{0}^{\infty} e^{-t x} f(x) d x\right| \leq \epsilon \int_{M}^{\infty} t e^{-t x} d x+\|f\|_{\infty} \int_{0}^{M} t e^{-t x} d x=\epsilon e^{-M t}+\|f\|_{\infty}\left[1-e^{-M t}\right] .
$$

Therefore,

$$
\underset{t \downarrow 0}{\limsup }\left|t \int_{0}^{\infty} e^{-t x} f(x) d x\right| \leq \epsilon
$$

Since ϵ is arbitrary, the limit is 0 .
(b) Is the converse to the statement in part (a) true? If so, prove it; if not give a counterexample.

The converse is not true. For a counterexample, take $f(x)=(-1)^{n}$ on $[n, n+1)$. Then
$t \int_{0}^{\infty} e^{-t x} f(x) d x=\sum_{n=0}^{\infty}(-1)^{n} \int_{n}^{n+1} t e^{-t x} d x=\left(1-e^{-t}\right) \sum_{n=0}^{\infty}\left(-e^{-t}\right)^{n}=\frac{1-e^{-t}}{1+e^{-t}}$.
(15) 5. Change the order of summation, with appropriate justification, to compute

$$
\sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\binom{k+l}{k} x^{k} y^{l} \quad \text { for }|x|+|y|<1
$$

If $x, y \geq 0$, the following interchange is justified, whether or not the series converges:

$$
\sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\binom{k+l}{k} x^{k} y^{l}=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\sum_{n=0}^{\infty}(x+y)^{n}
$$

Therefore,

$$
\sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\binom{k+l}{k}|x|^{k}|y|^{l}=\frac{1}{1-|x|-|y|}<\infty \quad \text { for }|x|+|y|<1 .
$$

It follows that the interchange in justified whenever $|x|+|y|<1$, and this gives

$$
\sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\binom{k+l}{k} x^{k} y^{l}=\frac{1}{1-x-y}
$$

in this case.
(15) 6. Suppose that f_{n} is continuous on E for each n and $f_{n} \rightarrow f$ uniformly on E. Prove that f is continuous on E.

Begin by writing

$$
|f(y)-f(x)| \leq\left|f(y)-f_{n}(y)\right|+\left|f_{n}(y)-f_{n}(x)\right|+\left|f_{n}(x)-f(x)\right| .
$$

To prove continuity at $x \in E$, given $\epsilon>0$, choose n so that $\left|f_{n}(z)-f(z)\right|<\epsilon$ for all $z \in E$, and then $\delta>0$ so that $d(y, x)<\delta$ implies $\left|f_{n}(y)-f_{n}(x)\right|<\epsilon$ for that n. Then $d(y, x)<\delta$ implies $|f(y)-f(x)|<3 \epsilon$.
(20) 7. Suppose that for each n, f_{n} is continuous on $[0,1]$ and satisfies $\left|f_{n}(x)\right| \leq 1$ for $0 \leq x \leq 1$. Define

$$
g_{n}(x)=\int_{0}^{x} f_{n}(t) d t
$$

(a) Show that there is a sequence n_{k} and a continuous function g on $[0,1]$ so that $g_{n_{k}} \rightarrow g$ uniformly on $[0,1]$.

Since $\left|g_{n}(y)-g_{n}(x)\right| \leq|y-x|$, and $\left|g_{n}(x)\right| \leq 1$ for all n, x, y, the family $\left\{g_{n}\right\}$ is uniformly bounded and equicontinuous. The result follows from Theorem 7.25.
(b) Is the function g in part (a) necessarily differentiable on $[0,1]$? Explain.

No. For a counterexample, let

$$
g_{n}(x)= \begin{cases}\left|x-\frac{1}{2}\right| & \text { if }\left|x-\frac{1}{2}\right| \geq \frac{1}{n} ; \\ \frac{n}{2}\left(x-\frac{1}{2}\right)^{2}+\frac{1}{2 n} & \text { if }\left|x-\frac{1}{2}\right| \leq \frac{1}{n},\end{cases}
$$

and $f_{n}=g_{n}^{\prime}$.
(20) 8. Suppose f is continuous on $[0,1]$, and let $\|f\|_{p}=\left[\int_{0}^{1}|f(x)|^{p} d x\right]^{1 / p}$ for $p \geq 1$ and $\|f\|_{\infty}=\max _{0 \leq x \leq 1}|f(x)|$.
(a) Show that $\|f\|_{p} \leq\|f\|_{\infty}$ for each p.

$$
\|f\|_{p} \leq\left[\int_{0}^{1}\|f\|_{\infty}^{p} d x\right]^{1 / p}=\|f\|_{\infty}
$$

(b) Show that $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$.

Without loss of generality, we may assume that $\|f\|_{\infty}>0$. Take $M \in$ $\left(0,\|f\|_{\infty}\right.$, and then an interval $(a, b) \subset[0,1]($ with $b>a)$ so that $|f(x)| \geq M$ on (a, b). Then

$$
\|f\|_{p} \geq\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{1 / p} \geq M(b-a)^{1 / p}
$$

It follows that

$$
\liminf _{p \rightarrow \infty}\|f\|_{p} \geq M
$$

Now take M close to $\|f\|_{\infty}$, and use part (a).
(30) 9. In each case, decide whether the statement is true or false. If true, prove it; if false, give a counterexample, or otherwise show it is false.
(a) If f_{n} and f are Riemann integrable on $[0,1]$ and $f_{n} \rightarrow f$ uniformly on $[0,1]$, then $\int_{0}^{1} f_{n} d x \rightarrow \int_{0}^{1} f d x$ as $n \rightarrow \infty$.

True:

$$
\left|\int_{0}^{1} f_{n} d x-\int_{0}^{1} f d x\right| \leq\left\|f_{n}-f\right\|_{\infty} \rightarrow 0
$$

(b) If $\sum_{n} a_{n} e^{i n x}$ is the Fourier series for the function

$$
f(x)= \begin{cases}x & \text { for } 0 \leq x \leq \pi \\ x-2 \pi & \text { for } \pi<x \leq 2 \pi\end{cases}
$$

then $\sum_{n}\left|a_{n}\right|<\infty$.
False. If it were true, then $\sum_{n} a_{n} e^{i n x}$ would converge uniformly to a continuous function g. But $g=f$ for $x \neq \pi$, since f is differentiable there. This is a contradiction, since f has a jump discontinuity at π.
(c) Every bounded function on $[0,1]$ is Riemann integrable.

False. Counterexample: the indicator of the rationals.
(d) If f in a continuous complex-valued function on $[0,1]$, then there exists a $t \in[0,1]$ so that

$$
\int_{0}^{1} f(x) d x=f(t)
$$

False. Counterexample: $f(x)=e^{2 \pi i x}$.
(30) 10. In each case, decide whether the statement is true or false. If true, prove it; if false, give a counterexample, or otherwise show it is false.
(a) If the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ has radius of convergence 1 , then $\sum_{n=0}^{\infty} c_{n}$ converges.

False. Counterexample: $c_{n}=1 / n$.
(b) The space $C[0,1]$ of continuous functions on $[0,1]$ with the norm $\|\cdot\|_{2}$ is complete.

False. Take $f_{n}(x)=\min \left\{(2 x)^{n}, 1\right\}$ and $f=1_{[1 / 2,1]}$. Then $f_{n} \rightarrow f$, so $\left\{f_{n}\right\}$ is Cauchy. If $f_{n} \rightarrow g$ for some continuous g, then $\|f-g\|_{2}=0$. Since $f-g$ is continuous except at $\frac{1}{2}, f=g$ except at $\frac{1}{2}$. This is a contradiction.
(c)

$$
\frac{d}{d x} \sum_{n=1}^{\infty} \frac{1}{n^{3}+n^{4} x^{2}}=-2 x \sum_{n=1}^{\infty} \frac{1}{n^{2}\left(1+n x^{2}\right)^{2}}
$$

True. The series on the right converges uniformly on compact sets, so the statement follows from Theorem 7.17, applied to the partial sums.
(d) If f is nonnegative and continuous on $[0, \infty)$, and satisfies $\lim _{x \rightarrow \infty} f(x)=$ 0 , then

$$
\int_{0}^{\infty} f(x) d x<\infty \quad \text { if and only if } \quad \sum_{n=1}^{\infty} f(n)<\infty
$$

False. Take $f(x)=(x-n)(1-x+n) /(n+1)$ for $n \leq x \leq n+1$.

