
T. Liggett Mathematics 131BH – Final Exam Solutions March 17, 2010

(15) 1. For which real values of x does the series

∞
∑

n=1

(nx)n

n!

converge? Explain.

By Stirling’s formula, n! ∼ nne−n
√

2πn, so

(nx)n

n!
∼ (xe)n

√
2πn

.

It follows that the series converges for |x| < e−1, and diverges for |x| > e−1

and for x = e−1. The series converges for x = −e−1 by the alternating series
test. To check this, one needs to know that

an =
(ne−1)n

n!

is decreasing to zero. The inequality an ≥ an+1 is equivalent to n log(1+ 1
n
) ≤

1. This follows from log(1 + x) ≤ x for x ≥ 0. (Note: an ∼ 1/
√

n does not
imply that

∑

(−1)nan converges. For an example in which it diverges, take
an = 1/

√
n for n odd and an = (1/

√
n) + (1/n) for n even.)

(15) 2. Use power series to compute

lim
x→0

ax − 1

x

for a > 0.

For x 6= 0, write

ax − 1

x
=

ex log a − 1

x
= log a

∞
∑

n=1

(x log a)n−1

n!
.

Therefore, the limit is log a.

(20) 3. Suppose f is a real-valued function on [−1, 1] with a continuous
derivative. Prove that there exist polynomials pn(x) so that pn → f and
p′n → f ′ uniformly on [−1, 1]. (You may use the Weierstrass Theorem.)

Choose polynomials qn so that qn → f ′ uniformly on [−1, 1], and let

pn(x) = f(−1) +

∫ x

−1

f ′(t)dt.

(20) 4. Suppose f is Riemann integrable on compact subsets of [0,∞).



(a) Show that limx→∞ f(x) = 0 implies

lim
t↓0

t

∫ ∞

0

e−txf(x)dx = 0.

Given ǫ > 0, choose M so that |f(x)| < ǫ for x ≥ M . Then

∣

∣

∣

∣

t

∫ ∞

0

e−txf(x)dx

∣

∣

∣

∣

≤ ǫ

∫ ∞

M

te−txdx+||f ||∞
∫ M

0

te−txdx = ǫe−Mt+||f ||∞
[

1−e−Mt
]

.

Therefore,

lim sup
t↓0

∣

∣

∣

∣

t

∫ ∞

0

e−txf(x)dx

∣

∣

∣

∣

≤ ǫ.

Since ǫ is arbitrary, the limit is 0.

(b) Is the converse to the statement in part (a) true? If so, prove it; if
not give a counterexample.

The converse is not true. For a counterexample, take f(x) = (−1)n on
[n, n + 1). Then

t

∫ ∞

0

e−txf(x)dx =
∞

∑

n=0

(−1)n

∫ n+1

n

te−txdx = (1−e−t)
∞

∑

n=0

(−e−t)n =
1 − e−t

1 + e−t
.

(15) 5. Change the order of summation, with appropriate justification, to
compute

∞
∑

k=0

∞
∑

l=0

(

k + l

k

)

xkyl for |x| + |y| < 1.

If x, y ≥ 0, the following interchange is justified, whether or not the series
converges:

∞
∑

k=0

∞
∑

l=0

(

k + l

k

)

xkyl =
∞

∑

n=0

n
∑

k=0

(

n

k

)

xkyn−k =
∞

∑

n=0

(x + y)n.

Therefore,

∞
∑

k=0

∞
∑

l=0

(

k + l

k

)

|x|k|y|l =
1

1 − |x| − |y| < ∞ for |x| + |y| < 1.



It follows that the interchange in justified whenever |x| + |y| < 1, and this
gives

∞
∑

k=0

∞
∑

l=0

(

k + l

k

)

xkyl =
1

1 − x − y

in this case.

(15) 6. Suppose that fn is continuous on E for each n and fn → f uniformly
on E. Prove that f is continuous on E.

Begin by writing

|f(y) − f(x)| ≤ |f(y)− fn(y)| + |fn(y) − fn(x)| + |fn(x) − f(x)|.

To prove continuity at x ∈ E, given ǫ > 0, choose n so that |fn(z)−f(z)| < ǫ
for all z ∈ E, and then δ > 0 so that d(y, x) < δ implies |fn(y) − fn(x)| < ǫ
for that n. Then d(y, x) < δ implies |f(y) − f(x)| < 3ǫ.

(20) 7. Suppose that for each n, fn is continuous on [0, 1] and satisfies
|fn(x)| ≤ 1 for 0 ≤ x ≤ 1. Define

gn(x) =

∫ x

0

fn(t)dt.

(a) Show that there is a sequence nk and a continuous function g on [0, 1]
so that gnk

→ g uniformly on [0, 1].

Since |gn(y) − gn(x)| ≤ |y − x|, and |gn(x)| ≤ 1 for all n, x, y, the fam-
ily {gn} is uniformly bounded and equicontinuous. The result follows from
Theorem 7.25.

(b) Is the function g in part (a) necessarily differentiable on [0, 1]? Ex-
plain.

No. For a counterexample, let

gn(x) =

{

|x − 1
2
| if |x − 1

2
| ≥ 1

n
;

n
2
(x − 1

2
)2 + 1

2n
if |x − 1

2
| ≤ 1

n
,

and fn = g′
n.

(20) 8. Suppose f is continuous on [0, 1], and let ||f ||p =
[ ∫ 1

0
|f(x)|pdx

]1/p

for p ≥ 1 and ||f ||∞ = max0≤x≤1 |f(x)|.



(a) Show that ||f ||p ≤ ||f ||∞ for each p.

||f ||p ≤
[

∫ 1

0

||f ||p∞dx
]1/p

= ||f ||∞.

(b) Show that limp→∞ ||f ||p = ||f ||∞.

Without loss of generality, we may assume that ||f ||∞ > 0. Take M ∈
(0, ||f ||∞, and then an interval (a, b) ⊂ [0, 1] (with b > a) so that |f(x)| ≥ M
on (a, b). Then

||f ||p ≥
[

∫ b

a

|f(x)|pdx
]1/p ≥ M(b − a)1/p.

It follows that
lim inf

p→∞
||f ||p ≥ M.

Now take M close to ||f ||∞, and use part (a).

(30) 9. In each case, decide whether the statement is true or false. If true,
prove it; if false, give a counterexample, or otherwise show it is false.

(a) If fn and f are Riemann integrable on [0, 1] and fn → f uniformly on

[0, 1], then
∫ 1

0
fndx →

∫ 1

0
fdx as n → ∞.

True:
∣

∣

∣

∣

∫ 1

0

fndx −
∫ 1

0

fdx

∣

∣

∣

∣

≤ ||fn − f ||∞ → 0.

(b) If
∑

n ane
inx is the Fourier series for the function

f(x) =

{

x for 0 ≤ x ≤ π;

x − 2π for π < x ≤ 2π,

then
∑

n |an| < ∞.

False. If it were true, then
∑

n aneinx would converge uniformly to a
continuous function g. But g = f for x 6= π, since f is differentiable there.
This is a contradiction, since f has a jump discontinuity at π.

(c) Every bounded function on [0, 1] is Riemann integrable.

False. Counterexample: the indicator of the rationals.



(d) If f in a continuous complex-valued function on [0, 1], then there
exists a t ∈ [0, 1] so that

∫ 1

0

f(x)dx = f(t).

False. Counterexample: f(x) = e2πix.

(30) 10. In each case, decide whether the statement is true or false. If true,
prove it; if false, give a counterexample, or otherwise show it is false.

(a) If the power series
∑∞

n=0 cnx
n has radius of convergence 1, then

∑∞

n=0 cn converges.

False. Counterexample: cn = 1/n.

(b) The space C[0, 1] of continuous functions on [0, 1] with the norm || · ||2
is complete.

False. Take fn(x) = min{(2x)n, 1} and f = 1[1/2,1]. Then fn → f , so {fn}
is Cauchy. If fn → g for some continuous g, then ||f − g||2 = 0. Since f − g
is continuous except at 1

2
, f = g except at 1

2
. This is a contradiction.

(c)

d

dx

∞
∑

n=1

1

n3 + n4x2
= −2x

∞
∑

n=1

1

n2(1 + nx2)2
.

True. The series on the right converges uniformly on compact sets, so the
statement follows from Theorem 7.17, applied to the partial sums.

(d) If f is nonnegative and continuous on [0,∞), and satisfies limx→∞ f(x) =
0, then

∫ ∞

0

f(x)dx < ∞ if and only if

∞
∑

n=1

f(n) < ∞.

False. Take f(x) = (x − n)(1 − x + n)/(n + 1) for n ≤ x ≤ n + 1.


