
T. Liggett Mathematics 131AH – Final Exam Solutions December 9, 2009

(15) 1. (a) Prove the following part of the ratio test: If an 6= 0 for each n
and

lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1,

then
∑

n an converges absolutely.

Proof. Choose β so that

lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < β < 1,

and then N so that ∣∣∣∣an+1

an

∣∣∣∣ ≤ β

for n ≥ N . Then |an| ≤ βn−N |aN | for n ≥ N . Now use the comparison test
– compare with the geometric series

∑
n β

n.

(b) Show by example that the statement in (a) is false if lim sup is replaced
by lim inf.

Example. Take a2n = 1, a2n+1 = 2. Then the lim inf and lim sup are 1
2

and 2
respectively, and the series diverges since the summands to not tend to 0.

(20) 2. Suppose f : X → Y is continuous. In each case, decide whether the
statement is true or false. If true, prove it; if false give a counterexample
with X = Y = R1.

(a) If K ⊂ X is compact, then f(K) is compact.

True; see Theorem 4.14.

(b) If K ⊂ Y is compact, then f−1(K) is compact.

False; take f(x) ≡ 0 and K = {0}.

(c) If E ⊂ X is connected, then f(E) is connected.

True; see Theorem 4.22.

(d) If E ⊂ Y is connected, then f−1(E) is connected.

False; take f(x) = x2 and E = [1, 4].

(28) 3. In each case, say whether the statement is true or false. Briefly
explain your answer.

(a) If {an, n ≥ 1} is decreasing and
∑
an converges, then there exists a

constant C so that an ≤ C/n.



True. Since the series converges, an ↓ 0. By the monotonicity,

nan ≤
n∑
k=1

ak ≤
∞∑
k=1

ak <∞.

(b) Let X be C[0, 1], the metric space of all continuous functions on [0, 1],
with d(f, g) = max0≤t≤1 |f(t)−g(t)|. Then {f ∈ X : d(f, 0) ≤ 1} is compact.

False, since fn(t) = tn is a sequence in the unit ball that does not have a
convergent subsequence.

(c) If f is continuous on (0, 1), it is uniformly continuous on (0, 1).

False; take f(x) = 1/x.

(d) Q ∩ [0, 1] is compact.

False; take x ∈ [0, 1]\Q, and xn ∈ Q so that xn → x. This sequence has no
convergent subsequence in Q ∩ [0, 1].

(e) If
∑

n an converges and {bn} is bounded, then
∑

n anbn converges.

False;
∑

n(−1)n/n converges, but
∑

n(−1)n(−1)n/n =
∑

n 1/n does not.

(f) If an and bn are real and
∑

n(a2
n + b2n) <∞, then

∑
n anbn converges.

True. This follows from the comparison test, since 2|anbn| ≤ a2
n + b2n. Alter-

natively, use the Schwarz inequality.

(g) If
∑

n |an+1 − an| <∞, then limn→∞ an exists.

True. The sequence an is Cauchy, since for m < n,

|an − am| ≤
∞∑
k=m

|ak+1 − ak|,

which tends to 0 as m→∞.

(15) 4. A family F of functions is said to be uniformly equicontinuous if

∀ ε > 0 ∃ δ > 0 3 d(x, y) < δ, f ∈ F ⇒ d(f(x), f(y)) < ε. (1)

(a) Suppose g : R2 → R1, and define fθ(x) = g(x cos θ, x sin θ) for 0 ≤
θ ≤ 2π. Prove that if {fθ, 0 ≤ θ ≤ 2π} is uniformly equicontinuous, then g
is continuous at the origin.



Proof. Given ε > 0, let δ > 0 be the value provided in (1) for this family.
Then |x| < δ implies that

|g(x cos θ, x sin θ)− g(0, 0)| < ε.

Writing (u, v) ∈ R2 in polar coordinates gives the result.

(b) Show by example that the statement in (a) is false if it is only assumed
that each fθ is continuous.

Example:

g(x, y) =

{
x2y
x4+y2

if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

Then

fθ(x) =
x cos2 θ sin θ

x2 cos2 θ + sin2 θ
,

and g(x, x2) = 1
2

for x 6= 0.

(10) 5. Prove that if limn→∞ an = a, then

lim
x↑1

(1− x)
∞∑
n=0

xnan = a.

Proof. This is equivalent to

lim
x↑1

(1− x)
∞∑
n=0

xn(an − a) = 0.

Given ε > 0, choose N so that n ≥ N ⇒ |an − a| < ε. Then∣∣∣∣(1− x)
∞∑
n=0

xn(an − a)

∣∣∣∣ ≤ ∣∣∣∣(1− x)
N−1∑
n=0

xn(an − a)

∣∣∣∣+ εxN ,

so

lim sup
x↑1

∣∣∣∣(1− x)
∞∑
n=0

xn(an − a)

∣∣∣∣ ≤ ε.

Since ε is arbitrary, the result follows.

(12) 6. (a) Suppose that F,K ⊂ X, F∩K = ∅, F is closed and K is compact.
Show that inf{d(x, y) : x ∈ F, y ∈ K} > 0.



Proof. Suppose that inf{d(x, y) : x ∈ F, y ∈ K} = 0. Then there are
sequences xn in F and yn in K so that d(xn, yn) → 0. Since K is compact,
we can pass to a subsequence so that ynk

→ y for some y ∈ K. By the
triangle inequality, xnk

→ y as well. Since F is closed, y ∈ F . Therefore
F ∩K 6= ∅, which is a contradiction.

(b) Show by example that the statement in (a) is not correct if K is only
assumed to be closed, rather than compact.

Example. Take F = {n ∈ Z : n ≥ 2} and K = {n+ 1
n

: n ∈ Z, n ≥ 2}.

(15) 7. Suppose a < c < b, f in continuous on (a, b), and f is differentiable
on (a, b)\{c}. Show that if limx→c f

′(x) exists, then f is differentiable at c
also.

Proof. By the mean value theorem, if t ∈ (a, b)\{c}, there is a d strictly
between t and c so that

f(t)− f(c)

t− c
= f ′(d).

As t→ c, the corresponding d→ c. Therefore,

f ′(c) = lim
t→c

f(t)− f(c)

t− c
= lim

x→c
f ′(x).

(10) 8. Suppose f is a nonnegative function on R1 such that for some M ,∑
x∈F

f(x) ≤M

for all finite F ⊂ R1. Show that {x : f(x) > 0} is at most countable.

Proof. For each positive integer n,

#

{
x : f(x) ≥ 1

n

}
≤ M

n
,

so {x : f(x) > 0} is the union of countably many finite sets.

(10) 9. Is Q, the set of rational numbers, connected? Prove your answer.



Proof. It is not; A = Q ∩ (−∞,
√

2) and B = Q ∩ (
√

2,∞) are separated
sets.

(15) 10. (a) Define f : R1 → R1 is differentiable at x.

(b) Prove that if f is differentiable at x, then it is continuous at x.

(c) Prove that if f and g are differentiable at x, then so is their product
fg.

See Definition 5.1 and Theorems 5.2 and 5.3.

(10) 11. Suppose that f is strictly positive and continuous on [0,∞), and
that limx→∞ f(x) = 1. Show that there is an ε > 0 so that f(x) ≥ ε for all
x ≥ 0.

Proof. Choose N so that f(x) ≥ 1
2

for x ≥ N . f achieves its minimum α > 0
on [0, N ] by compactness and continuity. Let ε be the smaller of 1

2
and α.

(10) 12. Suppose that f : [0, 1] → R1 is continuous and satisfies f(0) =
f(1) = 0 and f ′(0) = f ′(1) = 1. (f may not be differentiable on (0, 1).)
Show that there is an x ∈ (0, 1) so that f(x) = 0.

Proof. Since f ′(0) = f ′(1) = 1, there exist 0 < x < y < 1 so that f(x) > 0
and f(y) < 0. By the intermediate value theorem, there is a x < z < y so
that f(z) = 0.

(10) 13. Show that the sequence xn defined by x1 = 1 and

xn+1 = xn +
1

x2
n

, n ≥ 1

is unbounded.

Proof. Since

xn+1 − xn =
1

x2
n

≥ 0,

the sequence is increasing. If it were bounded, it would have to converge, say
to x. But then

x = x+
1

x2
,

which is impossible.



(20) 14. Suppose an ↓ 0 and
∑

n an =∞.
(a) Determine exactly for which complex z’s the series

∞∑
n=0

anz
n

converges absolutely.

Since an is bounded, the radius of convergence R ≥ 1, and since
∑

n an
diverges, R ≤ 1. Moreover,

∑
n an|z|n =∞ if |z| = 1. Therefore, R = 1, and

the series converges absolutely iff |z| < 1.

(b) Determine exactly for which complex z’s the series

∞∑
n=0

anz
n (2)

converges.

The series diverges if |z| > 1 and if z = 1. Therefore, we need to consider
only z so that |z| = 1 and z 6= 1. In this case, write

Sn =
n∑
k=0

zk =
1− zn+1

1− z
,

which is bounded in n. Use summation by parts to write

N∑
n=0

anz
n = aNSN +

N−1∑
n=0

(an − an+1)Sn.

The first term on the right tends to 0 as N →∞. The second term converges,
since

∞∑
n=0

|(an − an+1)Sn| ≤M

∞∑
n=0

(an − an+1) = Ma0 <∞,

where M is a bound on {Sn}. Therefore, the series in (2) converges if |z| =
1, z 6= 1.


