(15) 1. (a) Prove the following part of the ratio test: If $a_{n} \neq 0$ for each n and

$$
\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1
$$

then $\sum_{n} a_{n}$ converges absolutely.
Proof. Choose β so that

$$
\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<\beta<1
$$

and then N so that

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \leq \beta
$$

for $n \geq N$. Then $\left|a_{n}\right| \leq \beta^{n-N}\left|a_{N}\right|$ for $n \geq N$. Now use the comparison test - compare with the geometric series $\sum_{n} \beta^{n}$.
(b) Show by example that the statement in (a) is false if lim sup is replaced by liminf.
Example. Take $a_{2 n}=1, a_{2 n+1}=2$. Then the liminf and limsup are $\frac{1}{2}$ and 2 respectively, and the series diverges since the summands to not tend to 0 .
(20) 2. Suppose $f: X \rightarrow Y$ is continuous. In each case, decide whether the statement is true or false. If true, prove it; if false give a counterexample with $X=Y=R^{1}$.
(a) If $K \subset X$ is compact, then $f(K)$ is compact.

True; see Theorem 4.14.
(b) If $K \subset Y$ is compact, then $f^{-1}(K)$ is compact.

False; take $f(x) \equiv 0$ and $K=\{0\}$.
(c) If $E \subset X$ is connected, then $f(E)$ is connected.

True; see Theorem 4.22.
(d) If $E \subset Y$ is connected, then $f^{-1}(E)$ is connected.

False; take $f(x)=x^{2}$ and $E=[1,4]$.
(28) 3. In each case, say whether the statement is true or false. Briefly explain your answer.
(a) If $\left\{a_{n}, n \geq 1\right\}$ is decreasing and $\sum a_{n}$ converges, then there exists a constant C so that $a_{n} \leq C / n$.

True. Since the series converges, $a_{n} \downarrow 0$. By the monotonicity,

$$
n a_{n} \leq \sum_{k=1}^{n} a_{k} \leq \sum_{k=1}^{\infty} a_{k}<\infty
$$

(b) Let X be $C[0,1]$, the metric space of all continuous functions on $[0,1]$, with $d(f, g)=\max _{0 \leq t \leq 1}|f(t)-g(t)|$. Then $\{f \in X: d(f, 0) \leq 1\}$ is compact. False, since $f_{n}(t)=t^{n}$ is a sequence in the unit ball that does not have a convergent subsequence.
(c) If f is continuous on $(0,1)$, it is uniformly continuous on $(0,1)$.

False; take $f(x)=1 / x$.
(d) $Q \cap[0,1]$ is compact.

False; take $x \in[0,1] \backslash Q$, and $x_{n} \in Q$ so that $x_{n} \rightarrow x$. This sequence has no convergent subsequence in $Q \cap[0,1]$.
(e) If $\sum_{n} a_{n}$ converges and $\left\{b_{n}\right\}$ is bounded, then $\sum_{n} a_{n} b_{n}$ converges. False; $\sum_{n}(-1)^{n} / n$ converges, but $\sum_{n}(-1)^{n}(-1)^{n} / n=\sum_{n} 1 / n$ does not.
(f) If a_{n} and b_{n} are real and $\sum_{n}\left(a_{n}^{2}+b_{n}^{2}\right)<\infty$, then $\sum_{n} a_{n} b_{n}$ converges. True. This follows from the comparison test, since $2\left|a_{n} b_{n}\right| \leq a_{n}^{2}+b_{n}^{2}$. Alternatively, use the Schwarz inequality.
(g) If $\sum_{n}\left|a_{n+1}-a_{n}\right|<\infty$, then $\lim _{n \rightarrow \infty} a_{n}$ exists.

True. The sequence a_{n} is Cauchy, since for $m<n$,

$$
\left|a_{n}-a_{m}\right| \leq \sum_{k=m}^{\infty}\left|a_{k+1}-a_{k}\right|
$$

which tends to 0 as $m \rightarrow \infty$.
(15) 4. A family \mathcal{F} of functions is said to be uniformly equicontinuous if

$$
\begin{equation*}
\forall \epsilon>0 \exists \delta>0 \ni d(x, y)<\delta, f \in \mathcal{F} \Rightarrow d(f(x), f(y))<\epsilon \tag{1}
\end{equation*}
$$

(a) Suppose $g: R^{2} \rightarrow R^{1}$, and define $f_{\theta}(x)=g(x \cos \theta, x \sin \theta)$ for $0 \leq$ $\theta \leq 2 \pi$. Prove that if $\left\{f_{\theta}, 0 \leq \theta \leq 2 \pi\right\}$ is uniformly equicontinuous, then g is continuous at the origin.

Proof. Given $\epsilon>0$, let $\delta>0$ be the value provided in (1) for this family. Then $|x|<\delta$ implies that

$$
|g(x \cos \theta, x \sin \theta)-g(0,0)|<\epsilon
$$

Writing $(u, v) \in R^{2}$ in polar coordinates gives the result.
(b) Show by example that the statement in (a) is false if it is only assumed that each f_{θ} is continuous.

Example:

$$
g(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Then

$$
f_{\theta}(x)=\frac{x \cos ^{2} \theta \sin \theta}{x^{2} \cos ^{2} \theta+\sin ^{2} \theta}
$$

and $g\left(x, x^{2}\right)=\frac{1}{2}$ for $x \neq 0$.
(10) 5. Prove that if $\lim _{n \rightarrow \infty} a_{n}=a$, then

$$
\lim _{x \uparrow 1}(1-x) \sum_{n=0}^{\infty} x^{n} a_{n}=a .
$$

Proof. This is equivalent to

$$
\lim _{x \uparrow 1}(1-x) \sum_{n=0}^{\infty} x^{n}\left(a_{n}-a\right)=0
$$

Given $\epsilon>0$, choose N so that $n \geq N \Rightarrow\left|a_{n}-a\right|<\epsilon$. Then

$$
\left|(1-x) \sum_{n=0}^{\infty} x^{n}\left(a_{n}-a\right)\right| \leq\left|(1-x) \sum_{n=0}^{N-1} x^{n}\left(a_{n}-a\right)\right|+\epsilon x^{N}
$$

so

$$
\underset{x \uparrow 1}{\limsup }\left|(1-x) \sum_{n=0}^{\infty} x^{n}\left(a_{n}-a\right)\right| \leq \epsilon .
$$

Since ϵ is arbitrary, the result follows.
(12) 6. (a) Suppose that $F, K \subset X, F \cap K=\emptyset, F$ is closed and K is compact. Show that $\inf \{d(x, y): x \in F, y \in K\}>0$.

Proof. Suppose that $\inf \{d(x, y): x \in F, y \in K\}=0$. Then there are sequences x_{n} in F and y_{n} in K so that $d\left(x_{n}, y_{n}\right) \rightarrow 0$. Since K is compact, we can pass to a subsequence so that $y_{n_{k}} \rightarrow y$ for some $y \in K$. By the triangle inequality, $x_{n_{k}} \rightarrow y$ as well. Since F is closed, $y \in F$. Therefore $F \cap K \neq \emptyset$, which is a contradiction.
(b) Show by example that the statement in (a) is not correct if K is only assumed to be closed, rather than compact.
Example. Take $F=\{n \in Z: n \geq 2\}$ and $K=\left\{n+\frac{1}{n}: n \in Z, n \geq 2\right\}$.
(15) 7. Suppose $a<c<b, f$ in continuous on (a, b), and f is differentiable on $(a, b) \backslash\{c\}$. Show that if $\lim _{x \rightarrow c} f^{\prime}(x)$ exists, then f is differentiable at c also.

Proof. By the mean value theorem, if $t \in(a, b) \backslash\{c\}$, there is a d strictly between t and c so that

$$
\frac{f(t)-f(c)}{t-c}=f^{\prime}(d)
$$

As $t \rightarrow c$, the corresponding $d \rightarrow c$. Therefore,

$$
f^{\prime}(c)=\lim _{t \rightarrow c} \frac{f(t)-f(c)}{t-c}=\lim _{x \rightarrow c} f^{\prime}(x)
$$

(10) 8. Suppose f is a nonnegative function on R^{1} such that for some M,

$$
\sum_{x \in F} f(x) \leq M
$$

for all finite $F \subset R^{1}$. Show that $\{x: f(x)>0\}$ is at most countable.
Proof. For each positive integer n,

$$
\#\left\{x: f(x) \geq \frac{1}{n}\right\} \leq \frac{M}{n}
$$

so $\{x: f(x)>0\}$ is the union of countably many finite sets.
(10) 9. Is Q, the set of rational numbers, connected? Prove your answer.

Proof. It is not; $A=Q \cap(-\infty, \sqrt{2})$ and $B=Q \cap(\sqrt{2}, \infty)$ are separated sets.
(15) 10. (a) Define $f: R^{1} \rightarrow R^{1}$ is differentiable at x.
(b) Prove that if f is differentiable at x, then it is continuous at x.
(c) Prove that if f and g are differentiable at x, then so is their product $f g$.
See Definition 5.1 and Theorems 5.2 and 5.3.
(10) 11. Suppose that f is strictly positive and continuous on $[0, \infty)$, and that $\lim _{x \rightarrow \infty} f(x)=1$. Show that there is an $\epsilon>0$ so that $f(x) \geq \epsilon$ for all $x \geq 0$.

Proof. Choose N so that $f(x) \geq \frac{1}{2}$ for $x \geq N$. f achieves its minimum $\alpha>0$ on $[0, N]$ by compactness and continuity. Let ϵ be the smaller of $\frac{1}{2}$ and α.
(10) 12. Suppose that $f:[0,1] \rightarrow R^{1}$ is continuous and satisfies $f(0)=$ $f(1)=0$ and $f^{\prime}(0)=f^{\prime}(1)=1$. (f may not be differentiable on $(0,1)$.) Show that there is an $x \in(0,1)$ so that $f(x)=0$.

Proof. Since $f^{\prime}(0)=f^{\prime}(1)=1$, there exist $0<x<y<1$ so that $f(x)>0$ and $f(y)<0$. By the intermediate value theorem, there is a $x<z<y$ so that $f(z)=0$.
(10) 13. Show that the sequence x_{n} defined by $x_{1}=1$ and

$$
x_{n+1}=x_{n}+\frac{1}{x_{n}^{2}}, \quad n \geq 1
$$

is unbounded.
Proof. Since

$$
x_{n+1}-x_{n}=\frac{1}{x_{n}^{2}} \geq 0
$$

the sequence is increasing. If it were bounded, it would have to converge, say to x. But then

$$
x=x+\frac{1}{x^{2}},
$$

which is impossible.
(20) 14. Suppose $a_{n} \downarrow 0$ and $\sum_{n} a_{n}=\infty$.
(a) Determine exactly for which complex z 's the series

$$
\sum_{n=0}^{\infty} a_{n} z^{n}
$$

converges absolutely.
Since a_{n} is bounded, the radius of convergence $R \geq 1$, and since $\sum_{n} a_{n}$ diverges, $R \leq 1$. Moreover, $\sum_{n} a_{n}|z|^{n}=\infty$ if $|z|=1$. Therefore, $R=1$, and the series converges absolutely iff $|z|<1$.
(b) Determine exactly for which complex z 's the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} z^{n} \tag{2}
\end{equation*}
$$

converges.
The series diverges if $|z|>1$ and if $z=1$. Therefore, we need to consider only z so that $|z|=1$ and $z \neq 1$. In this case, write

$$
S_{n}=\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}
$$

which is bounded in n. Use summation by parts to write

$$
\sum_{n=0}^{N} a_{n} z^{n}=a_{N} S_{N}+\sum_{n=0}^{N-1}\left(a_{n}-a_{n+1}\right) S_{n}
$$

The first term on the right tends to 0 as $N \rightarrow \infty$. The second term converges, since

$$
\sum_{n=0}^{\infty}\left|\left(a_{n}-a_{n+1}\right) S_{n}\right| \leq M \sum_{n=0}^{\infty}\left(a_{n}-a_{n+1}\right)=M a_{0}<\infty
$$

where M is a bound on $\left\{S_{n}\right\}$. Therefore, the series in (2) converges if $|z|=$ $1, z \neq 1$.

