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1 Weighted norm inequalities for Calderón-

Zygmund operators without doubling con-

ditions

after X. Tolsa [15]
A summary written by Jonas Azzam

Abstract

For an arbitrary Borel measure µ satisfying µ(B(x, r)) ≤ Cr that
may be nondoubling, we characterize those weights w such that all
L2(µ)-bounded CZOs are also weak-type (p, p) bounded with respect
to wdµ. These in turn coincides with the class of weights for which
weighted inequalities hold for a certain maximal operaters, and also
satisfy a certain Sawyer-type condition.

1.1 Introduction

In a little over a decade, several results from classical harmonic analysis
concerning Calderon-Zygmund operators (CZOs) have been generalized to
the setting where the underlying measure is nondoubling. Much of this has
been motivated by Painlevé’s problem and the Cauchy integral operator. In
David’s work on Vitushkin’s conjecture in [2], for example, it was necessary
to prove a T (b)-theorem for CZOs on sets whose associated measures were
non-doubling, contrasting to the classical case where the underlying measure
is simply Lebesgue measure on Euclidean space.

Another example is Tolsa’s work on extending the definitions of BMO
and Hardy spaces on Euclidean space to the nondoubling scenario (see [12]).
In this paper, for a measure µ of the form (1) below, he constructs a Banach
space of functions RBMO=RBMO(µ) with the property that L2 bounded
CZOs are bounded from L∞ → RBMO, functions in RBMO satisfy a John-
Nirenberg inequality, and that RBMO coincides with the usual BMO space
if µ is Lebesgue measure. Other works include (but are not limited to)
[5, 6, 7, 13, 14, 16].

The main difficulty in these results is that the most of classical Calderon-
Zygmund theory depends on the doubling property of Lebesgue measure.
Without the doubling condition, essential tools such as the Vitali covering
lemma are difficult to use.
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In the paper being considered in this summary [15], Tolsa attempts to
generalize some of the theory of weighted inequalities for singular integrals
to the nondoubling setting.

We say that a function k : Rd × Rd → R is a (n-dimensional) Calderon-
Zygmund kernel if

1. |k(x, y)| . 1
|x−y|n for x 6= y, and

2. there is some γ ∈ (0, 1] such that for |x − x′| ≤ 1
2
|x − y|,

|k(x, y) − k(x′, y)| + |k(y, x) + k(y, x′)| .
|x − x′|
|x − y|

n+γ

.

In this case, we say the associated singular integral operator T is in CZO(γ).
We also let Tε denote the truncated singular integral operator and define
T∗f(x) = supε>0 |Tf(x)|.

For a fixed 0 < n ≤ d, let µ be any Borel measure satisfying

µ(B(x, r)) ≤ rn for all r > 0, x ∈ suppµ. (1)

We consider the problem of classifying weights w : Rd → (0,∞) such
that all L2(µ)-bounded n-dimensional Calderon-Zygmund T are also Lp(w)
bounded, that is,

∫
|Tf |pwdµ .

∫
|f |pwdµ for all f ∈ Lp(w). (2)

The case when n = d and µ is Lebesgue measure is a result of Coifman and
Fefferman, see [1]. In particular, (2) holds if and only if w in the class of Ap-
weights. This in turn coincides with the set of weights for which the Hardy-
Littlewood maximal function is Lp(w)-bounded by [4]. (Some references for
definitions and basic results of Ap weights include [3] and [11], although we
will not need them here).

Loosely speaking, Tolsa establishes that, for a general nondoubling mea-
sure µ as above, the class of weights for which (2) holds is equal to the class
of weights for which a certain maximal function is bounded on Lp(w). In
addition, these weights are characterized by certain Sawyer-type conditions.
We state these results precisely in Theorems 7 and 8 below.
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1.2 Notation and Preliminaries

Here we overview some of the tools developed by Tosla in [12, 14, 13].

1.2.1 Cubes

We assume that µ(Q) ≤ ℓ(Q)n, where Q is any cube in Rd with sides parallel
to the axes and ℓ(Q) denotes the side-length of Q. For such a cube, we will
denote its center by zQ. We will also call {x} for x ∈ Rd and Rd cubes (with
side-lengths 0 and ∞ respectively). Note that the cube Rd is considered to
be concentric with all cubes. To distinguish between these classes, we will
call all Q with 0 < ℓ(Q) < ∞ transit cubes.

We define a “distance” on cubes as follows: for Q ⊆ R two cubes, let QR

be the smallest cube concentric with Q containing R. Define

δ(Q, R) =

∫

QR\Q

1

|x − zQ|n
dµ(x).

Note that δ(x, Q) and δ(Rd, Q) make sense, and can be infinite.

Lemma 1. Let P ⊆ Q ⊆ R be cubes. Then the following hold:

1. If ℓ(Q) ∼ ℓ(R), then δ(Q, R) ∼ 1. In particular, ℓ(Q) ≤ tℓ(R) implies
δ(Q, R) . 2ntn.

2. δ(Q, R) . 1 + log ℓ(R)
ℓ(Q)

.

3. δ(P, R) = δ(P, Q) + δ(Q, R) ± ε0.

From hereon, a = b ± ε0 denotes that a = b + ε where |ε| ≤ ε0.

One can think of δ as a way of measuring the difference in scale between
cubes. In the case that µ is Lebesgue measure, notice that for any cube Q
we have δ(Q, 2Q) ∼ 1. This doesn’t necessarily hold for general measures µ
of the form we are considering.

For the analysis ahead, we need a lattice of cubes that act as a substitute
for the usual dyadic grid in Rd. In the Lebesgue measure case, the δ-distance
between concentric cubes of consecutive scales (say they are sizes 2k and
2k+1) is a positive constant, and translates of the same cube have the same
scale. We would like a lattice of cubes that behaves in a similar fashion.
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Lemma 2. Let A be a large constant. There is a family of cubes {Qx,k}k∈Z
x∈suppµ

such that the following hold:

1. For each x ∈ suppµ, the cubes Qx,k ⊆ Qx,k−1 are decreasing concentric
cubes such that

⋂
k Qx,k = {x} and

⋃
k Qx,k = Rd.

2. δ(Qx,k, Qx,j) ≤ (j − k)A ± ε if j > k.

3. δ(Qx,k, Qx,j) = (j − k)A ± ε if j > k and Qx,k, Qx,j are transit cubes.

4. 2Qx,k∩2Qy,k 6= ∅ implies that 2Qx,k ⊆ Qy,k−1 and ℓ(Qx,k) ≤ 1
100

ℓ(Qy,k−1).

5. There is η > 0 such that If m ≥ 1 and 2Qx,k+m ∩ 2Qy,k 6= ∅, then
ℓ(Qx,k) ≤ 2−ηAmℓ(Qy,k).

6. ℓ(Qx,k) is Lipschitz in x ∈ suppµ uniformly in k. Here, all constants
depend on d, ε0, and n and are independent of A.

Remark 3. Condition (2) is necessary if either δ(x, Q) or δ(Q, Rd) are finite.
In the former case, there is a constant Kx such that k ≥ Kx implies Qx,k =
{x}, and we call {x} a stopping cube. In the latter case, there are constants
K ′
x and K ′′

x such that for any x ∈ suppµ and k ≥ K we have Qx,k we call Rd

an initial cube,

The following definition gives us a way of determining the “scale” of an
arbitrary cube not part of our lattice

Definition 4. Let Dk = {Qx,k : x ∈ suppµ}, D =
⋃Dk. We say Q ∈ ADk

if there is Qx,k such that

ℓ(Qx,k) ≤
100

99
inf{ℓ(Qy,j) : Q ⊆ Qy,j}.

1.2.2 The averaging functions sk and the maximal operator N

The following lemma constructs functions sk(x, ·) that are intended to play
the role of a scaled bump function centered at x, that is, a compactly sup-
ported function with some smoothness whose mass is concentrated near the
cube Qx,k and whose mass is roughly constant as we shift in position and
scale.
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Lemma 5. If A is large enough, then for x ∈ suppµ and k ∈ Z there are
radially decreasing functions sk(x, ·) supported in 2Qx,k−1 such that:

1. sk(x, y) ∼ 1
Aℓ(Qx,k)

for y ∈ Qx,k.

2. sk(x, y) = 1
A|x−y|n for y ∈ Qx,k−1\Qx,k, (so in particular, sk(x, y) ≤

1
A|x−y|n for all y ∈ Rd).

3. ∇ysk(x, y) . A−1 min
(

1
ℓ(Qx,k)n+1 ,

1
|x−y|n+1

)
for all y ∈ Rd.

4. The sk(x, ·) are normalized in the sense that
∫

sk(x, y)dµ(y) ∈ ( 9
10

, 10
9
).

By the previous lemma and the properties of the cubes Qx,k, we have the
following lemma about the sk(x, ·) and their conjugates:

Lemma 6. 1. If y ∈ suppµ, then suppsk(·, y) ∈ Qy,k−2.

2. If Q ∈ ADk and y ∈ Q ∩ suppµ, then suppsk+m(y, ·) ⊆ 10
9
Q for m ≥ 3

and sk+m(·, y) ⊆ 10
9
Q for m ≥ 4.

3. For all k ∈ Z and y ∈ suppµ, the conjugates are normalized in the
sense that

∫
sk(x, y)dµ(x) ∈ ( 9

10
, 10

9
).

4. The kernels are almost symmetric, in the sense that

sk(x, y) . sk−1(y, x) + sk(y, x) + sk+1(y, x).

5. ∇xsk(x, y) . 1
A|x−y|n+1 .

In particular, the operator Skf(x) =
∫

sk(x, y)f(y)dµ(y) is a CZO, with
associated constants uniform in k.

All items except for (5) may be shown by previous lemmas, whereas item
(5) depends on the actual construction of the sk(x, ·) (although the key is
that ℓ(Qx,k) is Lipschitz in x).

In the classical case, most of these technicalities are avoided since we may
let sk(x, y) = ϕℓ(Qx,k)(x− y), where ϕ is some bump function adapted to the
unit cube centered at zero, and ϕℓ(Q) is the same function scaled by ℓ(Q).

Now that we have an appropriate averaging function, we may now define
the maximal operator N . For f ∈ L1

loc(µ) simply define
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Nf(x) = sup
k

Skf(x).

It is not difficult to show that Nf . M cf where M c is the usual centered
Hardy-Littlewood maximal function. However, the reverse inequality does
not hold in general.

1.3 Statement of Results

We are now in the position to state the main results. For a measurable
function w, let w(Q) =

∫
Q

wdµ.

Theorem 7. Let p ∈ [1,∞) and γ ∈ (0, 1]. Let w > 0 be a µ measurable
function, and if p 6= 1 let σ = w−p′/p. Then the following are equivalent:

1. All T ∈ CZO(γ) are weak-type (p, p) bounded with respect to wdµ.

2. For all T ∈ CZO(γ), T∗ is weak-type (p, p) bounded with respect to
wdµ.

3. N is weak-type (p, p) bounded with respect to wdµ.

4. The Sk are uniformly weak-type (p, p) bounded with respect to wdµ.

5. If p > 1, then the following holds uniformly in k ∈ Z and Q ⊆ Rd:

∫
|S∗
k(wχQ)|p′σdµ . w(Q). (3)

Theorem 8. With the same conditions as in the previous theorem, the same
theorem holds with the words “weak-type (p, p) bounded” replaced with “Lp

bounded” and in addition to (3) in (5), the following inequality holds:

∫
|Sk(σχQ)|pwdµ . σ(Q). (4)
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Weights satisfying the conditions in the first or second theorem are called
weak-Zp and Zp-weights respectively.

Items (1) and (2) of these theorems are generalizations of the Ap-weight
characterizations via singular integrals and maximal functions. In addition,
also note the Sawyer-type conditions (3) and (4) on the averaging operators.
In fact, the structures of the proofs of the two theorems are based upon those
in [9] and [10] respectively.

Remark 9. In [8], it is shown that for µ an arbitrary Borel measure, if
w ∈ Ap (where Ap is defined with respect to µ in the usual sense), then the
centered Hardy-Littlewood maximal operator M c is Lp(w) bounded. Since
Nf(x) . Mf(x), by the above results, Ap is not necessarily equivalent to Zp.
However, there are examples of weights that don’t satisfy a reverse Hölder
inequality, and thus Ap ( Zp.

We will focus entirely on the proof of Theorem 7 in the case that there
are no stopping or initial cubes (so all cubes are transition cubes).

1.4 Outline of proof of Theorem 7

1.4.1 The simple implications: (2) ⇒ (1) ⇒ (4) ⇒ (5)

Most of the implications in Theorem 7 follow easily. For example, (2) implies
(1) trivially.

If we assume (1), then each individual Sk is weakly bounded, so it remains
to show that they are uniformly weakly-bounded. This follows from the fact
that the Sk are CZO with uniform constants. Suppose they were not uni-
formly bounded, so we may find a sequence kj such that ||Skj

||Lp(w)→Lp,∞(w) ≥
j2. Let T =

∑
1
j2

Skj
, which is also CZO (here, we are using the fact that the

CZO constants for the Sk are all uniformly bounded) and thus also bounded
by (1). By the positivity of the Skj

, we have for any j0 ∈ N,

||T ||Lp(w)→Lp,∞(w) ≥
j0∑

j=1

||Skj
||Lp(w)→Lp,∞(w)

j2
≥ j0,

which contradicts the boundedness of T . Thus, (1) implies (4).
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The implication (4) ⇒ (5) is proven almost verbetum as its analogue in
[9]. Since Sk are uniformly weak-type (with respect to wdµ), so are their
duals. Let f ∈ Lp(σdµ). Then by the uniform weak-boundedness of the S∗

k ,

∫
Sk(wχQ)fσdµ =

∫

Q

S∗
k(fσ)wdµ =

∫ ∞

0

w{x ∈ Q : S∗
k(fσ) > λ}dλ

≤
∫ ∞

0

min{λ−p||S∗
kf ||Lp,∞(w), w(Q)}dλ . ||f ||Lp′(σ)w(Q)

1
p′

and the implication follows.

1.4.2 The implication (3) ⇒ (2)

The implication (3) ⇒ (2) resembles the traditional proof of weak weighted
inequality for singular integrals. Namely, we first establish a good-λ inequal-
ity of the form

w{x : T∗f(x) > (1 + ε)λ, Nf(x) ≤ δλ} ≤ (1 − η)w{x : T∗f(x) > λ} (5)

where η > 0 is some fixed constant, ε, λ > 0, and δ = δ(ε) > 0.
One way to establish this in the traditional case (that is, when µ is

Lebesgue measure and N is instead the uncentered maximal function) is,
more or less, to first prove the inequality for w ≡ 1 and then the A∞ con-
dition on w to get the inequality. However, we do not have this condition
when working with a general measure µ. Instead, we have the following
weaker form of the A∞ condition:

Definition 10. We say that a weight w is in Z∞ if there is τ > 0 such that
for any Q ∈ ADk and A ⊆ Rd,

Sk+3(χA)(x) ≥ 1

4
χQ ⇒ w(A ∩ 2Q) ≥ τw(Q). (6)

If (3) holds in the Theorem, it is not hard to show that w ∈ Z∞. With
this fact in hand, the proof runs in a similar fashion to the traditional proof,
although a bit more technical given our framework and the lack of the full
A∞ condition.
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1.4.3 The implication (5) ⇒ (3)

The model for this part is Sawyer’s theorem on two-weight weak-type in-
equalities for fractional integral operators (see [9]). We will give a rough
sketch of the proof of this implication.

Let T = N + βMR, where M is the radial uncentered Hardy-Littlewood
maximal function

Mf(x) = sup
B∋x

1

r(B)n

∫

B

fdµ,

and β is some large fixed constant. It is not difficult to show that MRf(x) .

Nf(x), so it suffices to prove T is weakly bounded, and in particular, we do
so by proving that, for some η ∈ (0, 1), the following good-λ inequality holds
for all ε, λ > 0

w(Ω(1+ε)λ) ≤ ηw(Ωλ) +
Cε

λp

∫
|f |pwdµ, (7)

where Ωλ = {Tf > λ}.
The reason for introducing this intermediate operator is that it is more

convenient to work with due to the following lemma:

Lemma 11. For ε > 0 there are β > 0 and m ∈ N large enough such that
the following holds: if W = {Qj} is a Whitney decomposition of Ωλ, and
Um(Q) is the union of all Whitney cubes that are linked to 3Q by a chain of
no more than m adjacent cubes in W, then for any Q ∈ W and x ∈ Q,

T (fχRd\Um(Q) ≤ (1 +
ε

2
)λ. (8)

Since Ω(1+ε)λ ⊆ Ωλ, it is covered by the collection W, so if Q ∈ W and
x ∈ Q ∩ Ω(1+ε)λ, by the lemma we have the estimate

T (fχUm(Q)) ≥
λε

2
χQ∩Ω(1+ε)λ

. (9)

Loosely speaking, since T is bounded pointwise by a constant times N ,
this says that for each x ∈ Q∩Ω(1+ε)λ there is a k with Sk(fχUm(Q)) large. If
we knew that there was one (or a finite sum of) such Sk(fχUm(Q)) where this
was true on a large “good” subset of Q∩Ω(1+ε)λ, then we could estimate the
wdµ-measure of this subset by integrating Sk(fχUm(Q)) over Q, which would
put us in a position to use the Sawyer-type estimate (3). This will give us a
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decent estimate on the size of our “good” set, and the theorem will follow so
long as we verify that the “bad” complement of this set has small measure.

More precisely, for each Q ∈ W, let hQ be such that Q ∈ ADh. For a
fixed δ > 0 small and n1 a large integer, we define

Gλ =
⋃

Q∈W
{x ∈ Q ∩ Ω(1+ε)λ : Sk(fχUm(Q)) ≥ δλ, k = hQ − n1, ..., hQ + 5},

and let Bλ = Ω(1+ε)λ\Gλ.
For n1 large enough and δ small enough, we may ensure that

w(Bλ) ≤ η1w(Ωλ) (10)

for some η1 ∈ (0, 1). To do this, we prove that

ShQ+3(χRd\Bλ
) ≥ 1

4
χQ,

then apply the Z∞ condition to get the estimate w(2Q\Bλ) ≥ τw(Q), and
then sum over all Q ∈ W (recalling that the Whitney decomposition has
bounded overlap).

Finally, with n1 and δ fixed, for each Q ∈ W we estimate w(Gλ ∩ Q)
using the Sawyer-type estimates. Using (3) and the definition of Gλ, it is not
difficult to show

w(Q ∩ Gλ) . w(Q)
1
p′

(∫

Ui

fwdµ

) 1
p

≤ θw(Q) + Cθ,p
1

λp

∫

Ui

|f |pwdµ,

where we just used the inequality a
1
p′ b

1
p ≤ θa+θ−

p′

p b. Fixing θ small enough,
and using the facts that Gλ ∪ Bλ = Ω(1+ε)λ and that the Ui have bounded
overlap, we add this to (10) to obtain (9).

For the case p = 1, a slight adjustment of the arguments above gives (4)
⇒ (3) in the theorem.
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2 Astala’s Conjecture on Distortion of Haus-

dorff Measures under Quasiconformal Maps

in the Plane

after Michael T. Lacey, Eric T. Sawyer, and Ignacio Uriarte-Tuero[4]
A summary written by Oleksandra Beznosova

Abstract

We outline the proof of the Astala’s conjecture on distortion of
Hausdorff measures under quasiconformal maps in the plane.

2.1 Introduction

The notion of a quasiconformal mapping, but not the name, was introduced
by H. Grötzsch in 1928. In 1935 this notion reappeared in the work of
Lavrentiev in relation to the partial differential equations. In 1936 Ahlfors
included a reference to the quasiconformal case to the theory of covering
surfaces. From then on the notion became generally known and widely used.

An orientation-preserving homeomorphism φ : Ω → Ω′ between planar
domains Ω, Ω′ ⊂ C is called K-quasiconformal if it belongs to the Sobolev
space W 1,2

loc (Ω) and satisfies the distortion inequality

max
α

|∂αφ| ≤ K min
α

|∂αφ| a.e. in Ω.

We will focus on the properties of quasiconformal maps with respect to
the Hausdorff measure on the complex plane.

Given set E ⊂ C, 0 ≤ s ≤ 2, and 0 < δ ≤ ∞, first define

Hs
δ(E) := inf

{ ∞∑

i=1

diam(Bi)
s : E ⊂

∞⋃

i=1

Bi , diam(Bi) ≤ δ

}
,

where Bi ⊂ C is a set, and diam(Bi) stands for its diameter. Clearly, Hs
δ(E)

decreases as δ increases. The quantity Hs
∞(E) is usually called the Hausdorff

content of the set E.
We define the s-dimensional Hausdorff measure to be:

Hs(E) := lim
δ→0

Hs
δ(E) = sup

δ>0
Hs
δ(E).
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Note that Hs = 0 ⇔ Hs
∞ = 0.

It is well known (see Ahlfors [1]) that the image under a quasiconformal
mapping of a set of zero Lebesgue measure also has the Lebesgue measure
zero. Similar is true for the sets of Hausdorff dimension zero, but they need
not preserve Hausdorff dimension bigger than zero. In 1956 Mori showed
that K -quasiconformal mappings are locally Hölder continuous with expo-
nent 1

K
, and this exponent is the best possible. In 1957 Bojarski showed that

quasiconformal mappings also distort the area by a power that only depends
on K. It was conjectured by Gehring and Reich in 1966 and proven Astala in
1994 [2] that optimal exponent in area distortion is the same, 1

K
. As a corol-

lary to the area distortion result, Astala showed the theorem below, which
proves the special case of a conjecture (for n = 2) of Iwanec and Martin.

Theorem 1. (Astala)Let φ : Ω → Ω′ be K-quasiconformal and suppose that
E ⊂ Ω is compact . Then

1

K

(
1

dim(E)
− 1

2

)
≤ 1

dim(φE)
− 1

2
≤ K

(
1

dim(E)
− 1

2

)
. (1)

Moreover, these bounds are optimal since equality may occur in either
estimate.

This is a sharp theorem for Hausdorff dimensions, we will state and prove
its refinement to Hausdorff measures.

Theorem 2. (Main Theorem) Lacey, Sawyer, and Uriarte-Tuero

If φ is a planar K-quasiconformal mapping, 0 ≤ t ≤ 2 and t′ = 2Kt
2+(K−1)t

,
then we have implication below for all compact sets E ⊂ C.

Ht(E) = 0 ⇒ Ht′(φE) = 0 (2)

First notice that the left side of (1) follows from (2) in a straight-forward
way. In order to see that (2) implies the right side of (1), we first observe
that the inverse of a K-quasiconformal mapping is K-quasiconformal, apply
main theorem to the inverse mapping and rewrite (2) as Ht′(F ) > 0 ⇒
Ht(φF ) > 0, which implies the right side of (1).

2.2 Sketch of the Proof of Main Theorem

1. We will first reduce the Main theorem to the case of K-quasiconformal
mappings of bounded dilatation K. Lemma 3 is a restatement of the main
theorem for such mappings.
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2. Bound on the dilatation constant of the quasiconformal mapping allows
us to apply Stoilow’s factorization, split it into the ’conformal inside’ part and
’conformal outside’ part and consider those two parts separately. Moreover,
’conformal inside’ part is handled in [3], which reduces the proof of the main
theorem to the ’conformal outside’ mapping.

3. The ’conformal outside’ part is the main focus of the paper. In order
to handle this, we will introduce families P of the dyadic cubes that obey a
t-packing condition and corresponding measures wt,P . Following Astala’s ap-
proach, statement then reduces to the boundedness of the Beurling operator
on Lp(wt,P) spaces, which does not follow from the Ap theory.

Step 1. Let us first restate the Main Theorem for the case of quasicon-
formal mappings of bounded dilatation.

Lemma 3. Let 0 < t < 2. Then there is a small constant 0 < k0 < 1 (k0 =
k0(t) is a decreasing function of t) so that the following holds.

Let φ : C → C be a K-quasiconformal mapping with K−1
K+1

≤ k0. Then we
have the following implication for all compact subsets E ⊂ C.

Ht(E) = 0 ⇒ Ht′(φE) = 0,

where t′ = 2Kt
2+(K−1)t

.

The Main Theorem follows from the Lemma 3 by standard decomposition
argument, that can be found in [1] or [5]. We will skip this proof. What
follows is the proof of Lemma 3

Step 2. We consider a K-quasiconformal mapping φ with K−1
K+1

≤ k0

and a compact set E ⊂ C. Following [3], we normalize mapping φ using
properties of the Möbius transformation which allows us to assume that E
is a compact subset of ( 1

32
, 1

16
)2 ⊂ 1

8
D ⊂ C.

Using Stoilow’s factorization and Koebe’s distortion theorem (see [6]),
one can show that without loss of generality, we can further assume that φ
is a principal mapping (i.e. they are K-quasiconformaal mappings that are

conformal outside D̄ and normalized by φ(z) − z = O
(

1
|z|

)
as z → ∞).

Step 3. On this step we will go over the covering arguments.
Hausdorff measure produced by dyadic cubes is equivalent measure to the

one produced by balls or arbitrary sets. By the dyadic cubes we will mean
[2−km1, 2

−k(m1 + 1)] × [2−km2, 2
−k(m2 + 1)], k ∈ N, m1, m2 ∈ Z.

Let P = {Pj}Nj=1 be a finite collection of disjoint dyadic cubes in the
plane. Let 0 < t < 2. We define the t-Carleson packing norm of P as follows:
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||P||t−pack := sup
Q

[
ℓ(Q)−t

∑

P∈P,P∈Q
ℓ(P )t

] 1
t

,

where supremum is taken over all dyadic cubes Q and ℓ(Q) is the side-
length of the cube Q.

We also define the measure wt,P associated with P by

wt,P :=
∑

j

l(Pj)
t−2χPj

(x).

Note that the measure wt,P behaves as a t-dimensional measure, i.e. for
any cube Q (dyadic or not) with sides parallel to the coordinate axes

wt,P ≤ 16||P||tt−packℓ(Q)t.

The following proposition allows us to approximate E by a finite union
of cubes and case m = 2 is one of the key tools in the proof of the Main
Theorem. We will state it without a proof.

Proposition 4. Let m ≥ 0 be an integer. Then there is a positive constant
C such that, for any compact set E ⊂ (0, 1)2 ⊂ C, 0 < t < 2, and ǫ > 0,
there is a finite collection of closed dyadic cubes P = {Pj}Nj=1 such that

(a) 2mPi ∩ 2mPj = ∅ for i 6= j.
(b) E ⊂ ⋃j 3 · 2mPj.
(c) ||P||t−pack ≤ 1.
(d)

∑
j ℓ(Pj)

t ≤ C(Ht
∞(E) + ǫ).

Consider ǫ > 0 and use Proposition 4, with m = 2, to obtain a collection
of cubes P = {Pi}, satisfying the conclusions of Proposition 4 with respect
to the compact set E. Denote Ω =

⋃
i Pi.

Following [2], decompose φ = g ◦ f , where both g and f are principal
K-quasiconformal mappings, f is conformal outside Ω, and g is conformal in
f(Ω) ∪ C \ D. The ’conformal inside’ part, g, has been addressed in [3], see
Theorem 5. The ’conformal outside’ mapping f is handled by the following
Lemma 6.

Theorem 5. Let g : C → C be a principal K-quasiconformal mapping. Let
{Sj}Nj=1 be a finite family of pairwise disjoint quasi-disks in D, such that
Sj = f(Dj) for a single K-quasiconformal map f and for discs (or cubes)
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Dj, and assume that g is conformal in Ω =
⋃
j Sj. Then for any t ∈ (0, 2]

and t′ = 2Kt
2+(K−1)t

, we have

(
N∑

j=1

diam(g(Sj))
t′

) 1
t′

≤ C(K)

(
N∑

j=1

diam(g(Sj))
t

) 1
tK

.

Lemma 6. Let 0 < t < 2. There is a positive constant ǫ0 (which is a
decreasing function of t) so that the following holds.

Let P = {Pj}Nj=1 be a finite collection of dyadic cubes which satisfies the
t-Carleson packing condition ||P||t−pack ≤ C. Assume further that cubes 3Pj
are pairwise disjoint. Let E = P̄ =

⋃
j Pj and let f : C → C be a principal

K-quasiconformal mapping which is conformal outside the compact set E,
with K−1

K+1
< ǫ0.

Then, there is a constant C(K, t), which for fixed K is a decreasing func-
tion of t, such that

N∑

j=1

diam(fPj)
t ≤ C(K, t)

N∑

j=1

ℓ(Pj)
t.

Proof of this Lemma heavily relies on the weighted norm inequalities for
Beurling operator on L2(wt,P). They do not follow from the standard Ap

theory and require a careful proof. The proof uses combinatorial properties
of measures wt,P and can be extended to the class of Calderón-Zygmund
operators.

Since dilatation of φ is at most ǫ0, the dilatation of f satisfies the same
bound, so that Lemma 6 applies to it.

By quasi-symmetry, Theorem 5 and Lemma 6, one can show that

Ht′

∞(φE) ≤ Ht′

∞

(
φ

(
⋃

i

12 · Pi
))

≤
∑

i

diam(φ(12 · Pi))t
′

≤ C(K)
∑

i

diam(φ(Pi))
t′ ≤ C(K)

(
∑

i

diam(f(Pi))
t

) t′

tK

≤ C(K, t)

(
∑

i

ℓ(Pi)
t

) t′

tK

≤ C(K, t)
(
Ht

∞(E) + ǫ
) t′

tK ≤ C(K, t) ǫ
t′

tK .
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This, up to Proposition 4 and Lemma 6 Completes the proof of the Main
Theorem.
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3 The Bellman functions and two-weight in-

equalities for Haar multipliers

after F. Nazarov, S. Treil, and A. Volberg [1]
A summary written by Nicholas Boros

Abstract

We outline a proof of the dyadic two weight Carleson imbedding
theorem and a proof of the bilinear imbedding theorem, which is a
dyadic version of a Sawyer type theorem.

3.1 Introduction

Let u, v be weights that are locally integrable, φ ∈ L2(R, R) and T0 an
operator that will act on φ. We will find certain classes of T0 such that

∫

R

|T0φ|2v ≤ C

∫

R

|φ|2u, ∀φ.

To help answer this question we first give a proof of the two-weight dyadic
Carleson imbedding theorem in Section 3.2. In Section 3.3 we prove the
bilinear imbedding theorem, which is a partial answer to the question and
can help find more such operators T0 that answer the question. This result
is the dyadic version of Verbitsky’s result [3], which is a generalization of
Sawyer’s original result [2], for which T0 is an integral operator with positive
kernel. The Bellman function technique will be used to prove both, which
requires no background except basic analysis and linear algebra. In Section
3.4 we use the two theorems to give more classes of T0 for which the above
estimate is true. For notation we use 〈φ〉I to denote 1

|I|
∫
I
φdx, where dx is

the Lebesgue measure and I ∈ D denotes I as a dyadic subinterval of R.
Also, we use the notation I− to denote the left half of I and I+ for the right
half.

3.2 Two-weight dyadic Carleson imbedding theorem

Theorem 1. Let w be any weight and {α}J∈D be a sequence of non-negative
numbers. Then

∑
J∈D αJ〈φ

√
w〉2J ≤ C‖φ‖2

L2 for all φ ∈ L2 is equivalent to
(SC) 1

|I|
∑

J⊂I αJ〈w〉2J ≤ C〈w〉I , ∀I ∈ D.
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Proof. (⇒) Use φ =
√

wχI and take the sum over intervals J ⊂ I.
(⇐) Reductions: (1) We can assume that φ ≥ 0, since the result can then

be easily extended using the fact that for any x, y ∈ R, (x − y)2 . x2 + y2.
(2) We can assume that C = 1 in (SC) because it can be made so by scaling
the weight. (3) We only need to prove the result summing over the dyadic
intervals inside of some Ik ∈ D.

We now define the Bellman function, B, which we can use to prove our re-
sult. Let wI := 〈w〉I , fI := 〈φ√w〉I , FI := 〈φ2〉I , MI := 1

|I|
∑

J⊂I,J∈D αJ〈w〉2J .
For I ∈ D define B(FI , fI , wI , MI) :=

sup
φ,w,{αJ}J∈D

{
1

|I|
∑

J⊂I,J∈D
αJ〈φ

√
w〉2J :

∑

J⊂K
αJ〈w〉2J ≤ 〈w〉K, ∀K ∈ D

}

on the domain Ω = {(F, f, w, M) ∈ R4 : f 2 ≤ Fw, M ≤ w; F, f, w, M ≥ 0}.
The first inequality in Ω is because of Cauchy-Schwarz and the second is due
to (SC). Note that B is independent of the initial choice of I ∈ D.
Bellman function properties:

1) For all (FI , fI , wI , MI) ∈ Ω we have 0 ≤ B(FI , fI , wI , MI) ≤ CFI .
2) (Weak Concavity) For all (FI±, fI±, wI±, MI±), (FI , fI , wI , MI) ∈ Ω sat-

isfying FI =
FI−+FI+

2
, fI =

fI−+fI+

2
, w =

wI−+wI+

2
, MI =

MI−+MI+

2
+ 1

|I|αIw
2
J

the following estimate holds:

B(FI , fI , wI , MI) ≥
1

2

(
B(FI− , fI−, wI−, MI−) + B(FI+ , fI+, wI+, MI+)

)
+

αIf
2
I

|I| .

The upper bound of Property 1 is what we need to finish proving the
theorem. When setting up a Bellman function we almost always have or
require a weak concavity/convexity property. The proof of Property 2 is
just a matter of plugging in the variables and taking supremums. Assuming
that such a Bellman function, B, exists we can now finish the proof of the
theorem.

Property 2 can be rewritten as

αJf
2
J ≤ |J |B(FJ , . . . , MJ) − |J−|B(FJ−, . . . , MJ−) − |J+|B(FJ+, . . . , MJ+),

for all J ∈ D, to show that
∑

J⊂I,J∈D,|J |>2−k|I|

αJf
2
J ≤ |I|B(FI , . . . , MI) −

∑

J⊂I,J∈D,|J |=2−k|I|

|J |B(FJ , . . . , MJ)

≤ |I|B(FI , fI , wI , MI) ≤ C|I|FI .
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The desired estimate follows by taking the limit as k approaches infinity.
Note that the following properties (2′) B is concave (i.e. d2B ≥ 0) and

(2′′) BM ≥ f2

w2 imply Property 2 of the Bellman function. So we present the

function B(F, f, w, M) = 4
(
F − f2

w+M

)
, which satisfies Properties 1, 2′ and

2′′, thus we are finished with the proof.

3.3 Bilinear imbedding theorem

Lemma 2. Let u, v be weights, {αJ}J∈D ⊂ R+, T0φ :=
∑

J∈D αJ〈φ〉JχJ , and

the truncation of T0 at I ∈ D be given by T
(I)
0 φ :=

∑
J⊂I,J∈D αJ〈φ〉JχJ . De-

note D′
1 =

{
J ∈ D :

〈φ√w〉2J
〈w〉J ≥ 〈θ√v〉2J

〈v〉J

}
. Then (1’) MI := 1

|I|
∫
I
|T (I)

0 (wχI)|2v ≤
C〈w〉I for all I ∈ D implies

∑
J∈D′

1
αJ〈φ

√
w〉J〈θ

√
v〉J |J | ≤ C‖φ‖2

L2 + ‖θ‖2
L2

for all φ, θ ∈ L2.

(Dual result) Let D′
2 =

{
J ∈ D :

〈φ√w〉2J
〈w〉J ≤ 〈θ√v〉2J

〈v〉J

}
. Then (2’)

∫
I
|T ∗

0 (vχI)|2w ≤
C
∫
I
v for all I ∈ D implies

∑
J∈D′

2
αJ〈φ

√
w〉J〈θ

√
v〉J |J | ≤ C‖φ‖2

L2 + ‖θ‖2
L2

for all φ, θ ∈ L2.

Proof. We only prove the first part since the dual result follows immediately
by replacing u with v, φ with θ and T0 with T ∗

0 . We will use a Bellman
function, with properties very similar to that of the Carleson imbedding
theorem, to prove the result. We define the variables as

FJ = 〈φ2〉J , fJ = 〈φ√w〉J , wJ = 〈w〉J , GJ = 〈θ2〉J , θJ = 〈g√v〉J , vJ = 〈v〉J .

These variables satisfy FJ = 1
2
(FJ− + FJ+), . . . , vJ = 1

2
(vJ− + vJ+), but MJ

does not. Using the fact that T
(J±)
0 w = T

(J)
0 w − αJ〈w〉J and the trivial

estimate A2 − (A − a)2 ≥ aA, for a ≤ a ≤ A, gives

MJ −
1

2
(MJ+ + MJ−) ≥ 1

|J |

∫

J

[
(T

(J)
0 w)2 − (T

(J)
0 − αJ〈w〉J)2

]
v

≥ αJ〈w〉J
1

|J |

∫

J

(T
(J)
0 w)v.

Since we now have an estimate including an expression not defined as a vari-
able (or constant), we define NJ as 1

|J |
∫
J

(T
(J)
0 w)v. Note that NJ − 1

2
(NJ+ +
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NJ−) = αJwJvJ . So FJ , fJ , wJ , gJ , vJ , MJ and NJ are the variables needed to
define the Bellman function. The dynamics of the variables are:

FJ =
1

2
(FJ− + FJ+), . . . , vJ =

1

2
(vJ− + vJ+), (1)

MJ ≥ 1

2
(MJ− + MJ+) + αJwJNJ , (2)

NJ =
1

2
(NJ+ + NJ−) + αJwJvJ (3)

Define the Bellman function, B, as the function satisfying the properties
below and with domain, Ω, of non-negative octets X = (F, f, . . . , N) such
that f 2 ≤ Fw, g2 ≤ Gv, M ≤ w. The first two inequalities, in Ω, are Cauchy-
Schwartz and the last one is just Condition (1′).
Bellman function properties:

1) For all X ∈ Ω we have 0 ≤ B(X) ≤ C(F + G)
2) (Weak Concavity) For all X satisfying the dynamics (1), (2), (3), the

Bellman function satisfies the following estimate for some γ > 0,

B(X) − 1

2

(
B(X−) + B(X+)

)
≥
{

γαfg , f
2

w
≥ g2

v

0 , f
2

w
< g2

v

Or one can equivalently we can write this as

γ|J |αJ〈φ
√

w〉J〈θ
√

v〉J ≤ |J |B(XJ) − |J+|B(XJ+) − |J−|B(XJ−).

Assuming that such a Bellman function exists, we can now prove the lemma.

∑

J∈D,J⊂I,|J |>2−k|I|

αJ〈φ
√

w〉J〈θ
√

v〉J |J | ≤ |I|B(XI) −
∑

J∈D,J⊂I,|I|=2−k|I|

|J |B(XJ)

≤ |I|B(XI). (4)

Letting k approach infinity gives

∑

J∈D,J⊂I
αJ〈φ

√
w〉J〈θ

√
v〉J |J | ≤ |I|B(XI) ≤ |I|C(FI + GI)

= C

(∫

I

φ2 +

∫

I

θ2

)
. (5)

Taking the limit as I expands to R proves the lemma.

27



Notice how the Bellman function properties here are almost identical to
that of the Carleson imbedding theorem (CIT). The lower bound in the weak
concavity is what we need to sum over to make the proof work, as before, so
it makes sense to require this property. Property 1 is the last piece needed
to finish the estimate, as before. It turns out that we can use the Bellman
function from the CIT as an initial start and then build to build upon to get
the Bellman function for this lemma. For more details refer to [1].

Theorem 3. (Bilinear Imbedding Theorem) Let u, v be two arbitrary weights,
{αJ}J∈D ⊂ R+, T0φ :=

∑
J∈D αJ〈φ〉JχJ , T := M√

vT0M√
w and the trunca-

tion of T0 at I ∈ D be given by T
(I)
0 φ :=

∑
J⊂I,J∈D αJ〈φ〉JχJ . We will refer

to the following inequalities below: (1)
∫
I
|T0(wχI)|2v ≤ C

∫
I
w, ∀I ∈ D,

(2)
∫
I
|T ∗

0 (vχI)|2w ≤ C
∫
I
v, ∀I ∈ D.

(A) Inequalities (1) and (2) imply (Tφ, θ)L2 =
∑

J∈D αJ〈φ
√

w〉J〈θ
√

v〉J |J | ≤
C‖φ‖L2‖θ‖L2 for all φ, θ ∈ L2.

(B) Let D1 =
{

J ∈ D :
〈f√w〉2J

〈f2〉J 〈w〉J ≥ 〈g√v〉2J
〈g2〉J 〈v〉J

}
. Then (1) is equivalent to

∑
J∈D1

αJ〈f
√

w〉J〈g
√

v〉J |J | ≤ C‖f‖L2‖g‖L2 for all f, g ∈ L2.

(Dual result) Let D2 =
{
J ∈ D :

〈φ√w〉2J
〈φ2〉J 〈w〉J ≤ 〈θ√v〉2J

〈θ2〉J 〈v〉J

}
. Then (2) is equivalent

to
∑

J∈D2
αJ〈φ

√
w〉J〈θ

√
v〉J |J | ≤ C‖φ‖L2‖θ‖L2 for all φ, θ ∈ L2.

Proof. First we will prove part (A). By the Lemma, we obtain

∑

J∈D
αJ〈φ

√
w〉J〈θ

√
v〉J |J | ≤



∑

J∈D′
1

+
∑

J∈D′
2


αJ〈φ

√
w〉J〈θ

√
v〉J |J |

≤ C
(
‖φ‖2

L2 + ‖θ‖2
L2

)
.

For t > 0 we replace φ by tφ and θ by t−1θ to get
∑

J∈D
αJ〈φ

√
w〉J〈θ

√
v〉J |J | ≤ C

(
t2‖φ‖2

L2 + t−2‖θ‖2
L2

)
.

Taking the infimum over all t ∈ (0,∞) gives
∑

J∈D
αJ〈φ

√
w〉J〈θ

√
v〉J |J | ≤ 2C (‖φ‖L2‖θ‖L2) ,

which completes the proof of part (A). Note that the Lemma gives a Young-
type inequality rather than the Hölder-type because it was easier to find a
Bellman function in that case.
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(B) We only need to prove the first part because the duality will follow
from that by interchanging v with w, T0 with T ∗

0 and φ with θ. Suppose that
∑

J∈D∞

αJ〈φ
√

w〉J〈θ
√

v〉J |J | ≤ C‖φ‖L2‖θ‖L2 , ∀φ, θ ∈ L2.

Fix I ∈ D and consider φ =
√

wχI . For θ ∈ L2 supported on I if J ⊂ I such

that J ∈ D then
〈φ√w〉2J

〈φ2〉J 〈w〉J ≥ 〈θ√v〉2J
〈θ2〉J 〈v〉J by Cauchy-Schwarz. So (Tφ, θ)L2 =

∑

J∈D,J⊂I
αJ〈φ

√
w〉J〈θ

√
v〉J |J | =

∑

J∈D1,J⊂I
αJ〈φ

√
w〉J〈θ

√
v〉J |J | ≤ C‖φ‖L2‖θ‖L2 .

Taking the supremum over all such θ with ‖θ‖L2 ≤ 1 gives
∫
I
|Tφ|2 ≤ C‖φ‖2

L2.
Conversely we can bootstrap, from the Bellman function found in the

Lemma, to prove the result. From [1], the Bellman function, B, satisfies
1) For all X ∈ Ω we have 0 ≤ B(X) ≤ 2(F + G)
2) (Weak Concavity) For all X satisfying the dynamics (1), (2),(3) the

Bellman function satisfies

B(X) − 1

2

(
B(X− + X−) + B(X+)

)
≥
{

1
16

αfg , f
2

w
≥ g2

v

0 , f
2

w
< g2

v
.

Consider B̃(τ)(X) := τF + 14τ−1G + B(τF,
√

τf, w, τ−1G,
√

τ−1g, v, M, N),
where in Bellman function B, we have multiplied f by

√
τ and g by

√
τ−1.

Observe that

τF + 14τ−1G ≤ B̃(τ)(X) ≤ 3τF + 16τ−1G

Define B̃(X) := infτ>0 B̃(τ)(X). Choosing τ = 2
√

G/F implies that B̃(τ)(X) ≤
6
√

FG + 8
√

FG. Therefore, B̃(X) ≤ 14
√

FG. Let τ∗ = τ∗(X) be where the

infimum is attained in B̃(X). Then 14τ−1
∗ G ≤ B̃(τ∗)(X) ≤ 14

√
FG ⇒ τ∗ ≥√

G/F . Now we have the estimate

B̃(X) − 1

2

(
B̃(X+) + B̃(X−)

)
≥ B̃(τ∗)(X) − 1

2

(
B̃(τ∗)(X+) + B̃(τ∗)(X−)

)
≥ αfg

16
,

when τ∗f2

w
≥ τ−1

∗ g2

v
. Since τ∗ ≥

√
G/F and f2

Fw
≥ g2

Gv
imply τ∗f2

w
≥ τ−1

∗ g2

v
then

the estimate is also true when f2

Fw
≥ g2

Gv
. Since zero is always a lower bound,

then

B̃(X) − 1

2

(
B̃(X− + X−) + B̃(X+)

)
≥
{

1
16

αfg , f2

Fw
≥ g2

Gv

0 , f2

Fw
< g2

Gv
,
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which can be rewritten as 1
16
|J |αJ〈φ

√
w〉J〈θ

√
v〉J ≤ |J |B(XJ)−|J+|B(XJ+)−

|J−|B(XJ−). Using this together with the estimate B̃(τ)(X) ≤ 14
√

FG we
can now finish the proof just as in (4) and (5).

3.4 Applications

We define the Haar functions for J ∈ D as hJ := χJ+ − χJ− and denote
∆Jφ := 1

|I|
∫

R
φhI . Also, define T = M√

vT0M√
w for weights u, v. The fol-

lowing results are proven in full detail in [1]. The first is an application of
the dyadic two weight Carleson imbedding theorem and disbalanced Haar
functions. The second is an application of the bilinear imbedding theorem
and dyadic two weight Carleson imbedding theorem.

Theorem 4. (Sawyer type theorem for the square function operator) Let

T0φ :=
(∑

J∈D αJ [∆Jφ]2χJ
) 1

2 for some {αJ}J∈D. Then the operator T is
bounded in L2 if, and only if, there exists C > 0 such that

∫
R

[T0(wχI)]
2v ≤

C
∫
I
w for all I ∈ D.

Theorem 5. (Sawyer type theorem for Haar Multipliers) Let α = {αJ}J∈D ⊂
R+, σ = {σJ}J∈D ⊂ {±1} and T0(σα)φ :=

∑
J∈D σJαJ [∆J ]φhJ . Then

sup
σ
‖T (σα)‖L2→L2 < ∞ if, and only if, there exists a C > 0 such that∫

R
[T0(ασ)(wχI)]

2v ≤ C
∫
I
w and

∫
R

[T ∗
0 (ασ)(vχI)]

2w ≤ C
∫
I
v for all I ∈ D

and all sign sequences σ.
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4 The sharp bound for the Hilbert transform

on weighted Lebesgue spaces

after S. Petermichl [4]
A summary written by Daewon Chung

Abstract

We summarize the proof in [4] of the linear estimate for the Hilbert
transform on the weighted Lebesgue space L2(w).

4.1 Introduction

We say w is a weight if it is locally integrable and positive almost everywhere.
In 1973, Hunt, Muckenhoupt and Wheeden proved that the Ap-condition:

w ∈ Ap iff [w]Ap := sup
I
〈w〉I〈w−1/(p−1)〉p−1

I < ∞

characterizes the boundedness of the Hilbert transform on Lp(w). Here the
notation 〈·〉I stands for the average over the interval I and the supremum
is taken over all intervals I. A year later, Coifman and Fefferman extended
this result to a larger class of convolution singular integrals with standard
kernels. Recently, many authors have been interested in finding the sharp
bounds for the operator norms in terms of the Ap-characteristic [w]Ap of the
weight. That is, one looks for a function φ(x), sharp in terms of its growth,
such that

‖Tf‖Lp(w) ≤ Cφ([w]Ap)‖f‖Lp(w) .

Most recently it has been solved for the general Calderón-Zygmund operators
in [5]. However, understanding this problem in the case of the Hilbert trans-
form will be a very important step. In this summary, we are interested in
obtaining sharp weight inequalities for the Hilbert transform which is defined
as follows:

Hf(x) = p.v.
1

π

∫
f(y)

x − y
dy .

We now provide the main result of [4].

Theorem 1. There exists a constant C such that, for all weights w ∈ Ap ,

‖Hf‖Lp(w) ≤ C[w]
max{1, 1

p−1
}

Ap
‖f‖Lp(w)

and this is sharp for 1 < p < ∞ .
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4.2 Preliminaries

4.2.1 Notations

We write 〈f〉I,w for the weighted average, 〈f〉I,w := 1
w(I)

∫
I
f(x)dx , where

w(I) =
∫
I
w. The notation 〈·, ·〉 stands for the standard inner product in

L2 and 〈·, ·〉w denotes the weighted inner product. Intervals of the form
[k2−j, (k + 1)2−j) for integers j, k are called dyadic intervals. Let us denoted
D the collection of all dyadic intervals. For any interval I ∈ D, there is a
Haar function defined by

hI(x) =
1√
|I|

(χI+(x) − χI−(x)) ,

where I± denote the left and right halves of I . We also consider the different
grids of dyadic intervals parameterized by α, r, defined by Dα,r = {α + rI :
I ∈ D} , for α ∈ R and positive r . For each grid Dα,r of dyadic intervals, there
are corresponding Haar functions hα,rI , I ∈ Dα,r that are an orthonormal
system in L2. Let us introduce a proper orthonormal system for L2(w) with
respect to the weighted inner product, the weighted Haar system, defined by

hwI :=
1

w(I)1/2

[
w(I−)1/2

w(I+)1/2
χI+ − w(I+)1/2

w(I−)1/2
χI−

]
.

Then, every function f ∈ L2(w) can be written as

f =
∑

I∈D
〈f, hwI 〉whwI ,

where the sum converges a.e. in L2(w) . Moreover, ‖f‖2
L2(w) =

∑
I∈D〈f, hwI 〉2w .

Since hwI is a constant on J for I ) J , we denote this constant by hwI (J) .
We can then write the weighted averages

〈f〉I,w =
∑

J)I

〈g, hwI 〉whwJ (I) .

We also use the notation ∆Iw = 1
2
(〈w〉I+ − 〈w〉I−) .

4.2.2 Theorems and Lemmas

To prove Theorem 1 we need several theorems and lemmas. One can find
the proof1 in the indicated references. Another main result in [4] is a two

1In fact, all of them were proved by the Bellman function argument.
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weighted bilinear embedding theorem, which was proved by a Bellman func-
tion argument.

Theorem 2. [Bilinear Embedding Theorem] Let w and v be weights so that
〈w〉I〈v〉I ≤ Q for all intervals I and let {αI} be a non-negative sequence so
that the three estimates below hold for all J

∑

I⊆J

αI
〈w〉I

≤ Qv(J) ,
∑

I⊆J

αI
〈v〉I

≤ Qw(J) , and
∑

I⊆J
αI ≤ Q|J | .

Then there is C such that for all f ∈ L2(w) and g ∈ L2(v)

∑

I∈D
αI〈f〉I,w〈g〉I,v ≤ CQ‖f‖L2(w)‖g‖L2(w) .

We will also need some inequalities for weights.

Lemma 3. [6] There exist a constant C such that for all weight w ∈ A2 and
dyadic interval I ∈ D ,

∑

I⊆J

|∆Iw| 2| I|
〈w〉I

≤ C[w]A2w(J) .

Lemma 4. [4] For all dyadic intervals J and all weights w ,

∑

I⊆J

|∆Iw| 2| I|
〈w〉3I

≤ w−1(J) .

Lemma 5. [1] If w ∈ A2 then there exists a constant C > 0 such that for
all dyadic intervals J

∑

I⊆J

|∆Iw| 2〈w−1〉I | I|
〈w〉I

≤ C[w]A2|J | .

Lemma 6. [2] If w ∈ A2 then there exists a constant C > 0 such that for
all dyadic intervals J

∑

I⊆J

(
|∆I+w| + |∆I−w|

)2〈w−1〉I | I|
〈w〉I

≤ C[w]A2|J | .
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4.3 The main argument

In [3], S. Petermichl introduced the dyadic shift operator and proved that
the kernel of the Hilbert transform can be written as a well chosen averages
of certain dyadic shift operators which are defined by

Sα,rf =
∑

I∈Dα,r

〈f, hI〉(hI− − hI+) .

This allows us to use the operator Sα,r instead of H to prove Theorem 1.
In the following arguments there is no dependence on the choice of the grid,
so we omit the indices α and r. Also, it suffices to consider the operator
Sf =

∑
I∈D〈f, hI〉hI−, and we will get the estimate

‖Sf‖L2(w) ≤ C[w]A2‖f‖L2(w) . (1)

Then the sharp extrapolation yields Theorem 1. We are going to show the
inequality (1) by duality, that is for any positive functions f ∈ L2(w−1) and
g ∈ L2(w)

|〈S(w−1f), g〉w| ≤ C[w]A2‖f‖L2(w−1)‖g‖L2(w) . (2)

Expanding f and g in the weighted Haar systems for L2(w−1) and L2(w),
respectively, we have

|〈S(w−1f, g〉w| =

∣∣∣∣
∑

I,J

〈f, hw
−1

I 〉w−1〈g, hwJ 〉w〈S(w−1hw
−1

I ), hwJ 〉w
∣∣∣∣ (3)

Since 〈S(w−1hw
−1

I ), hwI 〉 =
∑

L〈hL, hw
−1

I 〉w−1〈hL−
, hw

−1

I 〉I can be non-zero only
for L ⊆ I and L− ⊆ J . Also, there exist such intervals L only for I ⊆ J
or Ĵ ⊆ I , where Ĵ stands for the parent of J . Thus, we can decompose the
right hand of (3) into two parts, paraproducts:

∑
Ĵ(I ,

∑
I(J and diagonal

part :
∑

I=J ,
∑

I=Ĵ . The following Lemma lies at the heart of the matter for
the estimate for both parts.

Lemma 7. For all intervals I and weight w ∈ A2, there exists a constant C
such that ∥∥∥∥

∑

L⊆I
〈w−1, hL〉hL−

∥∥∥∥
L2(w)

≤ C[w]A2w
−1(I)1/2 . (4)

Once we have Lemma 7, the desired estimates for the two parts are very
straightforward. See [4] for more detail. We will emphasize the proof of
Lemma 7.
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Proof of Lemma 7. We are going to show Lemma 7 by duality, that is for
any positive function f ∈ L2(w) there exists a constant C such that

∣∣∣∣
〈∑

L⊆I
〈w−1, hL〉hL−

, f

〉

w

∣∣∣∣ ≤ C[w]A2w
−1(I)1/2‖f‖L2(w) . (5)

Expanding f in the weighted Haar system in L2(w), we have
∣∣∣∣
〈∑

L⊆I
〈w−1, hL〉hL−

, f

〉

w

∣∣∣∣ =

∣∣∣∣
∑

L⊆I
〈w−1, hL〉

∑

J∈D
〈f, hwJ 〉w〈hL−

, hwJ 〉w
∣∣∣∣ (6)

Since 〈hL−
, hwJ 〉w can be non-zero only for L− ⊆ J , we can split the sum in

(6) into three sums, J = L−, J = L, and J ) L .The sums for J = L− and
J = L can be estimated by
∑

L⊆I

∣∣〈w−1, hL〉〈f, hwL−
〉w〈hL−

, hwL−
〉w
∣∣ +
∑

L⊆I

∣∣〈w−1, hL〉〈f, hwL〉w〈hL−
, hwL〉w

∣∣

≤
(∑

L⊆I
〈f, hwL−

〉2w
)1/2(∑

L⊆I
〈w−1, hL〉2〈hL−

, hwL−
〉2w
)1/2

+

(∑

L⊆I
〈f, hwL〉2w

)1/2(∑

L⊆I
〈w−1, hL〉2〈hL−

, hwL〉2w
)1/2

≤ 2
√

2‖f‖L2(w)

(∑

L⊆I
〈w−1, hL〉2〈w〉L

)1/2

≤ C‖f‖L2(w)[w]A2w
−1(I)1/2 .

The last inequality is due to Lemma 3. Since 〈χI〉L,w−1 = 1 for all L ⊆ I , we
have for the sum J ) L,∣∣∣∣
∑

L⊆I
〈w−1, hL〉

∑

J :J)L

〈f, hwJ 〉w〈hL−
, hwJ 〉w

∣∣∣∣ ≤
∑

L⊆I
|〈w−1, hL〉| |〈w, hL−

〉|〈f〉L,w〈χI〉L,w−1

By Theorem 2, our desired estimate for this sum holds, provided the following
three embedding conditions hold:

∑

I⊆J

|〈w−1, hI〉| |〈w, hI−〉|
〈w〉I

≤ C[w]A2w
−1(J) (7)

∑

I⊆J

|〈w−1, hI〉| |〈w, hI−〉|
〈w−1〉I

≤ C[w]A2w(J) (8)

∑

I⊆J
|〈w−1, hI〉| |〈w, hI−〉| ≤ C[w]A2|J | (9)
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For the embedding condition (7), one can check by using Cauchy-Schwarz
inequality, Lemma 4, and Lemma 5. One also uses Cauchy-Schwarz inequal-
ity, Lemma 3 and Lemma 4 for the embedding condition (8). Finally, for the
embedding condition (9), we have

∑

I⊆J
|〈w−1, hI〉| |〈w, hI−〉|

≤ C

(∑

I⊆J

|∆Iw
−1|2〈w〉I | I|
〈w−1〉I

)1/2(∑

I⊆J

|∆I−w|2〈w−1〉I | I|
〈w〉I

)1/2

≤ C[w]A2|J | . (10)

Here inequality (10) uses Lemma 5 and Lemma 6. Note that the proof of the
embedding condition (9) was directly deduced by the single Bellman function
in [4].
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5 A characterization of a two-weight norm

inequality for maximal operators

after E.T. Sawyer [1]
A summary written by Francesco Di Plinio

Abstract

We outline the proof of Sawyer’s characterization of the two-weight
norm inequality for the Hardy-Littlewood maximal operator.

5.1 The main result and some perspective

Notation. Hereafter, if ω is a positive Borel measure on Rn and E ⊂ Rn

is measurable, we use the notation ω(E) =
∫
E

dω. If dω(x) = w(x)dx for
some positive locally integrable w, we abuse the above notation by writing
w(E) =

∫
E

w(x)dx in place of ω(E) and Lp(w, E) in place of Lp(ω, E).

Let Q be the collection of cubes in Rn and let us denote with

Mf(x) = sup
x∈Q∈Q

1

|Q|

∫

Q

|f |dy

the standard Hardy-Littlewood maximal operator. The main result of [1]
is a necessary and sufficient condition for the two-weight boundedness of
M . That is, if v and w are two weights (nonnegative functions) on Rn and
1 < p ≤ q ≤ ∞, p < ∞,

‖Mf‖Lq(w) ≤ C‖f‖Lp(v) (1)

if and only if

∥∥M
(
v[p]1Q

)∥∥
Lq(w,Q)

≤ C
(
v[p](Q)

) 1
p < ∞ ∀Q ∈ Q, (2)

where v[p](x) := (v(x))1−p′.
Ten years before Sawyer’s paper appeared, Muckenhoupt [3] proved that

the weak type inequality (1 < p < ∞)

w({x : Mf(x) > λ}) ≤ Cλ−p‖f‖Lp(v) (3)
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holds if and only if

sup
Q∈Q

(
w(Q)

|Q|

)(
v[p](Q)

|Q|

)p−1

< ∞. (4)

If w = v, the quantity on the lhs of (4) is the Ap-characteristic of w; in this
case, Muckenhoupt showed that (4) is actually equivalent to the strong-type
version of (3) when p = q, i.e. M is bounded on Lp(w) if and only w has
finite Ap-characteristic. However, (4) is not in general sufficient for (1) to
hold in the two-weight case.

Sawyer’s result appears to be the first complete characterization of pair of
weights for which (1) holds true. Although condition (2) (with w = v, p = q)
is not obviously equivalent to (4), the ideas in Sawyer’s proof of the equiva-
lence between (2) and (1) inspired a very elementary proof of Muckenhoupt’s
result by M. Christ and R. Fefferman [2].

5.2 Weighted norm inequalities for fractional maximal
operators

The equivalence (1) ⇐⇒ (2) is obtained as a particular case of a more general
result about the weighted fractional maximal operator

Mµ,αf(x) = sup
x∈Q∈Q

µ(Q)
α
n
−1

∫

Q

|f |dµ.

where µ is a positive locally finite Borel measure and 0 ≤ α < n.

Theorem 1. Assume that the measure µ is a doubling measure. Then, for
every pair (ν, ω) of positive Borel measures and for 1 < p ≤ q ≤ ∞, p < ∞,

‖Mµ,αf‖Lq(ω) ≤ C‖f‖Lp(ν) (5)

if and only if µ ≪ ν and, setting u = dµ
dν

,
∥∥∥Mµ,α

[
up

′−11Q
]∥∥∥

Lq(ω,Q)
≤ C

∥∥up′−1
∥∥
Lp(ν,Q)

< ∞ ∀Q ∈ Q. (6)

In turn, Theorem 1 is a consequence of the correspondent result for the
dyadic version of Mµ,α, namely

M∆(t)
µ,α f(x) = sup

x∈Q :Q−t∈Q∆

µ(Q)
α
n
−1

∫

Q

|f |dµ.

where t ∈ Rn and Q∆ is the collection of dyadic cubes of Rn.
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Theorem 2. For every t ∈ Rn and every pair (ν, ω) of positive Borel mea-
sure, for 1 < p ≤ q ≤ ∞, p < ∞,

‖M∆(t)
µ,α f‖Lq(ω) ≤ C‖f‖Lp(ν) (7)

if and only if µ ≪ ν and, setting u = dµ
dν

,
∥∥∥M∆(t)

µ,α

[
up

′−11Q
]∥∥∥

Lq(ω,Q)
≤ C

∥∥up′−1
∥∥
Lp(ν,Q)

< ∞ (8)

holds for every Q such that Q − t ∈ Q∆.

Observe that Theorem 2 does not require µ to be a doubling measure,
while Theorem 1 does. In fact, the doubling condition is only needed in the
averaging argument used to deduce Theorem 1 from Theorem 2, which we
now sketch.

Sketch of proof of (6) =⇒ (5). By a limiting argument in k, we can prove
the correspondent statement with the collection Q replaced by the collection
Qk of cubes of Rn with sidelength at most 2k in the definition of Mµ,α. Next,
(6) is clearly stronger than (8), so that we can apply Theorem 2 to get the
bound

‖M∆(t)
µ,α ‖Lp(ν)→Lq(ω) ≤ C, ∀t ∈ Rn.

We then finish the proof of (5) by showing the pointwise bound

Mµ,αf(x) ≤ C

∫

[−2k+2,2k+2]n
M∆(t)

µ,α f(x)
dt

2n(k+3)
.

To do this, let Q ∈ Qk be a cube with x ∈ Q, ℓ(Q) ≈ 2j, j ≤ k and

µ(Q)
α
n
−1

∫

Q

|f |dµ & Mµ,αf(x).

Let Ω be the set of t ∈ [−2k+2, 2k+2]n such that there exists a cube Qt ⊃ Q
with ℓ(Qt) = 2j+1 and Qt − t ∈ Q∆. For t ∈ Ω, we have Qt ⊂ 7Q, so that
using that the measure µ is doubling, µ(Qt) ≤ Cµ(Q), and therefore

M∆(t)
µ,α f(x) ≥ µ(Qt)

α
n
−1

∫

Qt

|f | dµ & µ(Q)
α
n
−1

∫

Q

|f | dµ & Mµ,αf(x).

Noting that Ω occupies at least one fourth of [−2k+2, 2k+2]n and then aver-
aging concludes the proof of the pointwise bound.
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5.3 Proof of the dyadic case.

We sketch the proof of the sufficiency of (8) in Theorem 2. It is enough to
prove the case t = 0 since the statements are invariant under translations
and reflections of Rn. For the rest of the section, Mµ,α stands for M

∆(0)
µ,α .

For a fixed k ∈ Z, let Jk be the collection of Calderon-Zygmund cubes
corresponding to the level set Ek = {Ma,µf > 2k}. Then, for Q ∈ Jk, by
Hölder,

µ(Q)1−α
n ≤ 2−k

∫

Q

|f | udν ≤ 2−k‖f‖Lp(ν,Q)‖u‖Lp′(ν,Q)

≤ 2−k‖f‖Lp(ν,Q)σ(Q)
1
p′ , (9)

having set dσ =
(

dµ
dν

)p′
dν = up

′−1dµ. Note that σ(Q) is finite (by (8)) and
positive (since µ(Q) > 0), and by definition of σ,

Mµ,α

(
up

′−11Q
)
≥ µ(Q)

α
n
−1σ(Q) on Q. (10)

At this point, the case q = ∞ follows by using assumption (8) and disjointness
of the cubes of Jk. The case p ≤ q < ∞ requires extra work. Assumption
(8) followed by (10) yields

ω(Q)µ(Q)
qα
n
−qσ(Q)q ≤

∥∥∥M∆(t)
µ,α

[
up

′−11Q
]∥∥∥

q

Lq(ω,Q)
.
∥∥up′−1

∥∥q
Lp(ν,Q)

= σ(Q)
q
p .

We use the last inequality and (9) to get that ω(Q) ≤ 2−kq‖f‖qLp(ν,Q), for
Q ∈ Jk. Therefore, by disjointness of Q ∈ Jk and using q ≥ p, we obtain

ω(Ek) =
∑

Jk

ω(Q) . 2−kq‖f‖qLp(ν).

Furthermore, if we set Q⋆ = Q ∩ (Ek+1)
c for Q ∈ Jk, we can estimate

‖Mµ,αf‖qLq(ω) .
∑

k

2kqw(Ek+1 − Ek) ≤
∑

k

∑

Q∈Jk

w(Q⋆)
(
µ(Q)

α
n
−1
∫
Q
|f |dµ

)q

=
∑

k

∑

Q∈Jk

γ(Q)
(
σ(Q)−1

∫
Q
|f |u1−p′dσ

)q
(11)

where, for Q ∈ Jk

γ(Q) := ω(Q⋆)
(
µ(Q)

α
n
−1
∫
Q

up
′−1dµ

)q
≤
∫

Q⋆

(
Mα,µ

[
up

′−11Q
])q

dω.
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Define now the measure space Ω = {(k, Q) : k ∈ Z, Q ∈ Jk}, with measure
assigning mass γ(Q) to (k, Q). The operator

g 7→ Tg, [Tg](k,Q) =
1

σ(Q)

∫

Q

|g| dσ,

is clearly of strong type (∞,∞). We claim that it is also weak type (1, q/p),
so that we get strong type (p, q) by Marcienkiewicz interpolation theorem.
Assuming that the claim is true, we get from (11) that

‖Mµ,αf‖qLq(ω) .
∑

k

∑

Q∈Jk

γ(Q)
([

T
(
|f |u1−p′)]

(k,Q)

)q
=
∥∥T
(
|f |u1−p′)∥∥q

Lq(Ω)

.
∥∥|f |u1−p′∥∥q

Lp(σ)
= ‖f‖qLp(ν),

i.e. (7) follows.
Let us conclude by sketching the proof of the claim. Let λ > 0 and Iλ be

the Calderon-Zygmund cubes corresponding to the level set

{(k, Q) : Q ∈ Jk,
∫
Q
|g| dσ > λσ(Q)}.

Then, using (8) to go from the first to the second line, and recalling q ≥ p,

|{|Tg| > λ}| .
∑

I∈Iλ

∑

(k,Q):Q⊂I
γ(Q) ≤

∑

I∈Iλ

∑

(k,Q):Q⊂I

∫

Q⋆

(
Mα,µ

[
up

′−11Q
])q

dω

.
∑

I∈Iλ

σ(I)
q
p ≤

(
∑

I∈Iλ

σ(I)

) q
p

.

(
λ−1

∑

I∈Iλ

∫

I

|g|
) q

p

≤
‖g‖

q
p

L1(σ)

λ
q
p

.
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6 A two weight inequality for the Hilbert trans-

form assuming an energy hypothesis

after M.T. Lacey, E.T. Sawyer and I. Uriarte-Tuero [1]
A summary written by Kabe Moen

Abstract

We explore the two weight problem for the Hilbert transform, sum-
marizing [1]. The authors introduce a range of side conditions, known
as Energy conditions. At one endpoint the Energy conditions are nec-
essary for the two weight inequality and at the other endpoint they
become the Pivotal conditions of Nazarov, Treil, and Volberg [3]. As-
suming the Energy conditions hold, the two weight boundedness of the
Hilbert transform is shown to be equivalent to two testing conditions
and a Poisson A2 condition. The authors also provide an example
showing that the Pivotal conditions are not necessary for the two
weight inequality.

6.1 Introduction

Let H be the Hilbert transform. The two weight problem for H is to find
necessary and sufficient conditions on a pair of non-negative functions (u, v)
so that H maps L2(v) into L2(u), i.e.

∫

R

|Hf(x)|2u(x) dx ≤ C

∫

R

|f(x)|2v(x) dx.

Notice that by setting σ = v−1, an equivalent formulation is for the operator
H( · σ) being bounded from L2(σ) to L2(u). We examine inequalities of the
form

‖H(fσ)‖L2(ω) ≤ C‖f‖L2(σ) (1)

where ω and σ are nonnegative locally finite Borel measures, i.e.weights. We
refer to (1) as the two weight inequality.

Motivated by the one weight theory, a natural condition for the weights
to satisfy would be the two weight version of the A2 condition:

sup
I

1

|I|

∫

I

dω · 1

|I|

∫

I

dσ < ∞. (2)
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However this condition is not sufficient. In fact, it is even not sufficient for
the weak-type inequality

ω({x : |H(fσ)(x)| > t}) ≤ C

t2

∫

R

|f(x)|2 dσ,

see [2]. This is in stark contrast to the Hardy-Littlewood maximal operator,
M . The operator M is bounded from L2(v) to L2,∞(u) if and only if (u, v)
satisfies (2) with dω = u dx and dσ = v−1 dx.

One way to strengthen the A2 condition is to consider Poisson A2:

P(I, µ) ≡
∫

R

|I|
(|I| + dist(x, I))2

dµ (3)

A2
2 = sup

I
P(I, ω) · P(I, σ). (4)

When A2 < ∞ we say the pair (ω, σ) satisfies the Poisson A2 condition.
The T1 theorem of David and Journé coupled with Sawyer’s work on two

weight inequalities for positive operators provides motivation for additional
conditions. These conditions are referred to as the “testing conditions”,

H2 = sup
I

∫
I
|H(χIσ)|2 dω

σ(I)
< ∞ (5)

(H∗)2 = sup
I

∫
I
|H(χIω)|2 dσ

ω(I)
< ∞. (6)

It is conjectured that the two weight inequality (1) is equivalent to (ω, σ)
satisfying the Poisson A2 condition and the testing conditions (5) and (6).
This is analogous to the T1 Theorem with the testing conditions playing the
role of T1, T ∗1 ∈ BMO and the Poisson A2 condition playing the role of
weak boundedness. The approach of Nazarov, Treil, and Volberg [3] proves
this conjecture subject to two additional conditions, the Pivotal Conditions

∞∑

r=1

ω(Ir)P(Ir, χIσ)2 ≤ Cσ(I) and
∞∑

r=1

σ(Ir)P(Ir, χIω)2 ≤ Cω(I)

where these inequalities holds for all intervals I and pairwise disjoint parti-
tions of I =

⋃
r Ir.

One of the many novelties introduced in [1] is the Energy Functional, E.
Let

Eω
I f =

1

ω(I)

∫

I

f dω
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and

E(I, ω)2 = Eω(dx)
I Eω(dy)

I

( |x − y|
|I|

)2

=
1

ω(I)2

∫∫

I×I

|x − y|2
|I|2 dω(x)dω(y).

Notice that E(I, ω) ≤ 1 and if ω = δa, the point mass for a ∈ I, then
E(I, δa) = 0. A refinement of the Pivotal Conditions is the following, given
0 ≤ ǫ ≤ 2 let

Eǫ = sup
I

sup
I=∪rIr

1

σ(I)

∑

r

ω(Ir)E(Ir, ω)ǫP(Ir, χIσ)2 (7)

E∗
ǫ = sup

I
sup
I=∪rIr

1

ω(I)

∑

r

σ(Ir)E(Ir, σ)ǫP(Ir, χIω)2. (8)

Notice that when E0 and E∗
0 are finite the weights (ω, σ) satisfy the Pivotal

Conditions above. Since E(J, ω) ≤ 1 we have Eǫ ≤ Eδ for 0 ≤ δ < ǫ ≤ 2.
When Eǫ and E∗

ǫ are finite we say that the Energy Conditions are satisfied.
We are now ready to state the main theorem.

Theorem 1. Let ω and σ be weights with no common point masses, i.e.,
ω({x})σ({x}) = 0 for all x ∈ R. Suppose that for some 0 ≤ ǫ < 2, Eǫ
and E∗

ǫ are finite. Then the two weight inequality (1) holds if and only if
A2 + H + H∗ < ∞. Moreover,

‖H( · σ)‖ . Eǫ + E∗
ǫ + A2 + H + H∗.

One of the remarkable aspects of the Energy Conditions is they are nec-
essary for the two weight inequality when ǫ = 2. Specifically, we have the
following theorem.

Theorem 2. The following inequalities hold

E2 . A2 + H, and E∗
2 . A2 + H∗.

If one could show that the Energy Conditions are also sufficient when ǫ = 2
then one would have a complete characterization of the two weight inequality
for the Hilbert transform. Alternatively one might attempt to show that the
Pivotal Conditions are necessary, thus providing a characterization of the
two inequality. However, we construct an example of a pair of weights that
satisfy the two weight inequality but not the Pivotal Conditions.
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Theorem 3. There exists a pair of weights (ω, σ) and ǫ0, 0 < ǫ0 < 2 such
that Eǫ + E∗

ǫ < ∞, for ǫ0 ≤ ǫ < 2, and A2 + H + H∗ < ∞, but E∗
0 = ∞.

In particular, the Pivotal Conditions are not necessary for the two weight
inequality (1).

The rest of this summary is devoted to the analysis of the two weight
inequality with the added Energy Conditions. In Section 6.2, we motivate
the definition of the Energy Conditions. In Section 6.3 we provide a glimpse
into the proof of Theorem 1. Section 6.4 is devoted to showing the Pivotal
Conditions are not necessary, the content of Theorem 3.

6.2 Motivation for the Energy Conditions

We now motivate the formulation of the Energy Condition in terms of a
Calderón-Zygmund decomposition type argument. Suppose b is a function
supported on an interval I that has cancellation with respect to the measure
dσ, ∫

I

b dσ = 0.

Consider estimating
∫

R\2I
|H(bσ)|dω =

∫

R\2I

∣∣∣∣
∫

I

b(y)

x − y
dσ(y)

∣∣∣∣ dω(x).

The usual move is to use the cancellation of b to add the quantity
∫

I

b(y)

cI − x
dσ(y) =

1

cI − x

∫

I

b dσ = 0

where cI is the center of the interval I. However, a more precise estimate
that takes into account the weight σ is to add the quantity

Edσ(z)
I

(
1

z − x

)
·
∫

I

b dσ =
1

σ(I)

∫

I

1

z − x
dσ(z) ·

∫

I

b dσ = 0.

Then we have,
∫

R\2I
|H(bσ)|dω =

∫

R\2I

∣∣∣∣
∫

I

b(y) · Edσ(z)
I

(
z − y

|I|
|I|

(x − y)(z − x)

)
dσ(y)

∣∣∣∣ dω(x)

≤ 4

∫

I

|b(y)|
∫

R\2I
Edσ(z)
I

( |z − y|
|I|

) |I|
(|I| + dist(x, I))2

dω(x)dσ(y)

≤ 4‖b‖L2(σ) · ω(I)
1
2 · E(I, σ) · P(I, χR\2Iω).
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6.3 Proof of Theorem 1

In this section we give a (very) brief sketch of the proof of Theorem 1. See
also the summary of the paper [3] by M.C. Reguera, which uses similar
techniques. We wish to estimate 〈H(fσ), g〉ω, for “nice” functions f ∈ L2(σ)
and g ∈ L2(ω) with norm one. Expanding in Haar bases adapted to the
measures ω and σ we have

〈H(fσ), g〉ω =
∑

I,J∈D
〈f, hσI 〉σ〈H(σhσI ), h

ω
J 〉ω〈g, hωI 〉ω

=
∑

I,J∈D
〈H(σ∆σ

I f), ∆ω
Jg〉ω

where 〈·, ·〉µ denotes the pairing with respect to the measure µ, D is a dyadic
grid, and

∆µ
I f = 〈f, hµI 〉µ · hµI .

The different measures σ and ω may not interact well with this decompo-
sition. By shifting the grids and using a ‘good-bad’ decomposition of the
functions f and g one can make the reduction to sum over certain ‘good’
intervals (I, J). This is a minor point in the proof and we do not discuss it
further.

We decompose the sum into several layers which each contain several
pieces. We will use the notation C1

1 , C1
2 , C2

1 , . . ., for our estimates, where the
superscript indicates the level of the decomposition and the subscript indi-
cates the piece within that level. We will also use I1

1 , I1
2 , I2

1 , . . ., to indicate
the index of summation of the decomposition. We begin by spitting the sum
in (9)

〈Tf, g〉ω =
∑

(I,J)∈I1
1

〈H(σ∆σ
I f), ∆ω

Jg〉ω +
∑

(I,J)∈I1
2

〈H(σ∆σ
I f), ∆ω

Jg〉ω

= C1
1 + C1

2

where the sums in C1
1 and C1

2 are over the index sets

I1
1 = {(I, J) : |J | ≤ |I|} and I1

2 = {(I, J) : |I| > |J |}.

The estimate C1
2 is similar to C1

1 using duality: 〈H(fσ), g〉ω = −〈H(gω), f〉σ.
The term C1

1 is split into three pieces,

C1
1 = C2

1 + C2
2 + C2

3 ,
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with corresponding index sets

I2
1 = {(I, J) ∈ I1

1 : 2−r|I| ≤ |J | ≤ |I|, dist(I, J) ≤ |I|},
I2

2 = {(I, J) ∈ I1
1 : |J | ≤ |I|, dist(I, J) > |I|},

I2
3 = {(I, J) ∈ I1

1 : |J | < 2−r|I|, dist(I, J) ≤ |I|}

where r is a sufficiently large integer depending on the good-bad decomposi-
tion of f and g. Roughly speaking, the terms in C2

1 are ‘diagonal short-range’,
the terms in C2

2 are ‘long-range’, and the terms in C2
3 are ‘short-range’. The

testing conditions and Poisson A2 are used to estimate C2
1 and C2

2 , in partic-
ular C2

1 . A2 and C2
2 . H.

The terms in C2
3 are decomposed further, C2

3 = C3
1 + C3

2 . The substantial
term is C3

2 , as C3
1 . Eǫ. Estimating this term is the crux of the proof, and we

provide a brief glimpse into the machinery that is used. We have

C3
2 =

∑

(I,J)∈I3
2

〈H(σ∆σ
I f), ∆ω

Jg〉ω

where
I3

2 = {(I, J) : |J | < 2−r|I|, J ⊂ I}.
For (I, J) ∈ I3

2 since J ⊂ I, let IJ denote the child that contains J and Î be
some ancestor of IJ . Then

〈H(σ∆σ
I f), ∆ω

Jg〉ω = 〈H(σχI\IJ∆σ
I f), ∆ω

Jg〉ω + 〈H(σχIJ∆σ
I f), ∆ω

Jg〉ω
= 〈H(σχI\IJ∆σ

I f), ∆ω
Jg〉ω + Eσ

IJ
∆σ
I f · 〈H(σχÎ), ∆

ω
Jg〉ω (9)

−Eσ
IJ

∆σ
I f · 〈H(σχÎ\IJ ), ∆ω

Jg〉ω. (10)

The point is that ∆σ
I f is constant on IJ and equals its σ-average. Thus C3

2

can be split into three sums corresponding to the three terms in (9) and (10).
The terms a referred to as, respectively, ‘neighboring terms’, ‘paraproduct
terms’, and ‘stopping terms’. The neighboring terms are bounded by A2

and the stopping terms are bounded by Eǫ. The paraproduct is the essential
term. It is decomposed further using a Corona decomposition modified with
the Energy Condition. The Corona decomposition yields Carleson measure
estimates for the paraproducts.
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6.4 Counterexample for the Pivotal Conditions

Let C denote the Cantor set, C =
⋂
n En where En =

⋃2n

k=1 Ink and |Ink | = 3−k.
The Cantor measure is the unique probabiltiy measure supported on C with
the property that

ω(Ink ) = 2−n, n ≥ 0, 1 ≤ k ≤ 2n.

Let Gn
k be the removed open middle third of Ink and

σ =

∞∑

n=1

2n∑

k=1

(
2

9

)n
δcnk .

where cnk ∈ Gn
k is to be chosen. The usual choice of cnk would be the center

of Gn
k . However the following construction exploits the cancelation of Hω.

Notice that since ω is supported in C, Hω is monotonically decreasing on
Gn
k from ∞ at the left endpoint to −∞ at the right endpoint. Therefore Hω

has a unique zero, say Hω(cnk) = 0. The pair of weights (ω, σ) satisfies the
Poisson A2 condition and the testing conditions (5) and (6).

The weights (ω, σ) also verify Eǫ < ∞ for 0 < ǫ ≤ 2 and E∗
ǫ < ∞ for

ǫ0 ≤ ǫ ≤ 2 with

ǫ0 =
ln 4

ln(9/2)
≈ 0.92

but E∗
0 = ∞. This shows that (ω, σ) satisfy the two weight inequality (1) but

not the Pivotal conditions.
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7 A sharp estimate on the norm of the mar-

tingale transform

after J. Wittwer [7]
A summary written by Jean Moraes

Abstract

In this paper, following [7], we show that the bound for the martin-
gale transform in L2(w) is linear in the A2 Muckenhoupt characteristic
constant of w, for w ∈ A2.

7.1 Introduction

It was known since the 70s that singular integrals operators in L2(w) are
bounded for w ∈ A2, this result is due to Hunt, Muckenhaupt and Wheeden.
However until the 90s nothing was known about how the bounds of these
operators depend on the A2 characteristic [w]A2 of the weights. Nowadays
this dependence is known to be linear for many operators: Hilbert transform,
Ahlfors-Beurling transform, Riesz transforms, martingale transforms; in fact
Tuomas Hytönen just posted in the arXiv what is claimed to be the proof
that a CZ-singular integral operators must obey a linear bound in L2(w) with
respect to [w]A2. In [7], Wittwer proved that the bound for the martingales
transform is linear. This was one of the first family of operators to be shown
a sharp linear dependence in [w]A2.

7.2 Main Theorem

In what follows, hI(x) will denote the normalized Haar function for the dyadic

interval I, i.e., hI(x) =
χI−

(x)−χI+
(x)√

|I|
, where I−,I+ denotes the left and the

right children of I respectively. The weight w will be dyadic A2 weight on
[0, 1]. Also, w will be normalized to have

∫ 1

0
w(x)dx = 1. Let, 〈f〉I =

1
|I|
∫
I
f(x)dx for I a dyadic interval. Note if we define P (I) = 〈w〉I〈w−1〉I ,

then [w]A2 = supI∈D P (I).

The weights w and w−1 can be decomposed as w(x) =
∏

I∈D([0,1])

(1 + cIhI(x))

and w−1(x) =
∏

I∈D([0,1])

(1 + dIhI(x)) where cI =
〈w〉I−−〈w〉I+

2〈w〉I

√
|I| and dI =
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〈w−1〉I−−〈w−1〉I+
2〈w−1〉I

√
|I|. where D([0, 1]) is the collection of all dyadic intervals

in [0, 1]. Let r(I) be a function from D([0, 1]) to {−1, 1}, then we define a
martingale transform as

(
Trf
)
(x) =

∑

I∈D([0,1])

r(I)〈f, hI〉hI(x)

Theorem 1. For all w ∈ A2 and all f ∈ L2(w), there exists a constant c,
independent of r, such that

||Trf ||L2(w) ≤ c[w]A2||f ||L2(w).

7.3 Preliminaries

In order to prove this theorem we will need some lemmas and theorems:

Theorem 2 (Weighted Carleson Embedding Theorem). Let αI ≥ 0.
Then ∑

I∈D([0,1])

〈fw1/2〉2IαI ≤ 4c||f ||2L2, ∀f ∈ L2(dx) iff

1

|J |
∑

I⊂J
〈w〉2IαI ≤ c〈w〉J , ∀J ∈ D[0, 1].

Theorem 3. Let αI ≥ 0. If

1

|J |

∫

J

(∑

I⊂J
αI〈w〉IχI(x)

)2

w−1(x)dx ≤ c1〈w〉J , ∀J ∈ D and (1)

1

|J |

∫

J

(∑

I⊂J
αI〈w−1〉IχI(x)

)2

w(x)dx ≤ c1〈w−1〉J , ∀J ∈ D (2)

Then
∑

I∈D
αI〈fw1/2〉I〈gw−1/2〉I |I| ≤ c2||f ||L2||g||L2 ∀f, g ∈ L2(dx), (3)

where c2 ≤ c
√

c1 and c is an constant.

The proof of Theorem 2 can be found in [5], section 2, and Theorem 3
can be found in [7].
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Theorem 4. Let Sf be the dyadic square function of f . Then for all w ∈ A2

||Sf ||L2(w) ≤ c[w]A2||f ||L2(w)

and this estimate is sharp, where Sf(x) =
(∑

I∈D

|〈f, hI〉|2
|I| χI(x)

)1/2

This result was first proved in [4], Wittwer used a different method to
also prove this in [7].

Corollary 5. If w ∈ A2, then
1

|J |
∑

I⊂J
〈w−1〉2Id2

I〈w〉I ≤ c[w]2A2
〈w−1〉J

Proof. Just note that 1
|J |
∑

I⊂J〈w−1〉2Id2
I〈w〉I ≤ ||S(w−1χJ ||2L2(w) which by

Theorem 4 is bounded by c[w]2A2
||w−1χJ ||2L2(w).

The next two lemmas are proved in [7], we will give the idea of the proof
of Lemma 7.

Lemma 6. If w ∈ A2, then
1

|J |
∑

I⊂J

cI√
|I|

dI√
|I|

P (I)|I| ≤ C[w]A2.

Lemma 7. If w ∈ A2, then
1

|J |
∑

I⊂J

cI√
|I|

dI√
|I|

〈w〉I |I| ≤ C[w]A2〈w〉J .

Proof. This lemma is proved by the method of Bellman functions. Consider
B(x, y) = x

(−4A
xy

− xy
4A

+ 4A + 1
)
, this function has the following properties:

• 0 ≤ B(x, y) ≤ 5Ax on D1 = {x, y > 0; 1 ≤ xy ≤ A}.

•
[ −Bxx −Bxy − 1

y

−Bxy − 1
y

−Byy

]
and

[ −Bxx −Bxy + 1
y

−Bxy + 1
y

Byy

]

are positive semidefinite on D2 = {x, y > 0; 1 ≤ xy ≤ 2A}.
These properties imply that:

B(x, y) − B(x−, y−) + B(x+, y+)

2
≥ C

∣∣(x− − x+)(y− − y+)
∣∣

where x = x−+x+

2
, y = y−+y+

2
and (x, y), (x−, y−), (x+, y+) ∈ D1. In order

to get the desired estimate, we just have to run the usual type of Bellman
function argument using x = 〈w〉J , y = 〈w−1〉J , x− = 〈w〉J−, x+ = 〈w〉J+,
y− = 〈w−1〉J−, y+ = 〈w−1〉J+ and A = [w]A2.
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7.4 Proof of Theorem 1

Let us estimate the norm of the martingale transform by duality,

||Trf ||L2(w) = sup
||g||L2(w−1)=1

∫ ∑

I,J∈D
r(I)〈f, hI〉hI(x)〈g, hJ〉hJ(x)dx

Using the fact that {hI(x)}I is an orthonormal basis in L2(dx) we can
collapse the double sum in just one sum,

||Trf ||L2(w) = sup
||g||L2(w−1)=1

∑

I∈D
r(I)〈f, hI〉〈g, hJ〉 (4)

Now, note that ||f ||L2(w) = ||fw1/2||L2(dx) and ||g||L2(w−1) = ||gw−1/2||L2(dx),
so we can replace f by fw1/2 and g by gw−1/2 in (4), and then write

||Tr||L2(w)→L2(w) = sup
||f ||L2(dx)=1

sup
||g||L2(dx)=1

∑

I∈D
r(I)〈fw−1/2, hI〉〈gw1/2, hI〉 (5)

Let’s consider

hwI (x) =
hI(x) + γwI χI(x)

δwI
,

where γwI = −cI
|I| and δwI =

√
〈w〉I(1 − c2

I/|I|) =
√

〈w〉I− 〈w〉I+
wI

, for these choices

{hwI }I is a normalized and orthogonal system in L2(w) with respect to the
weighted inner product 〈f, g〉 =

∫
fgwdx.

Substituting hI(x) = δwI hwI (x) − γwI χI(x) and hI(x) = δw
−1

I hw
−1

I (x) −
γw

−1

I χI(x) in (5) we can rewrite
∑

I∈D r(I)〈fw−1/2, hI〉〈gw1/2, hI〉 as Γ1 +
Γ2 + Γ3 + Γ4, where

Γ1 =
∑

I∈D[0,1]

r(I)〈fw−1/2, hw
−1

I 〉δw−1

I 〈gw1/2, hwI 〉δwI (6)

Γ2 = −
∑

I∈D[0,1]

r(I)〈fw−1/2, χI〉γw
−1

I 〈gw1/2, hwI 〉δwI (7)

Γ3 = −
∑

I∈D[0,1]

r(I)〈fw−1/2, hw
−1

I 〉δw−1

I 〈gw1/2, χI〉γwI (8)

Γ4 =
∑

I∈D[0,1]

r(I)〈fw−1/2, χI〉γw
−1

I 〈gw1/2, χI〉γwI (9)

We will estimate each sum separately in absolute value.
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7.4.1 Sum Γ1

|Γ1| ≤
∑

I∈D[0,1]

∣∣〈fw−1/2, hw
−1

I 〉〈gw1/2, hwI 〉
∣∣
√

〈w〉I+〈w〉I−〈w−1〉I+〈w−1〉I−
〈w〉I〈w−1〉I

By geometric-arithmetic ineq. 〈w〉I+〈w〉I− ≤ 〈w〉I2 and 〈w−1〉I+〈w−1〉I− ≤
〈w−1〉I2 then

|Γ1| ≤
∑

I∈D([0,1])

∣∣〈fw−1/2, hw
−1

I 〉〈gw1/2, hwI 〉
∣∣√P (I)

≤ [w]
1/2
A2

∑

I∈D([0,1])

∣∣〈fw1/2, hw
−1

I 〉w−1〈gw−1/2, hwI 〉w
∣∣ (10)

Since {hwI }I∈D and {hw−1}I∈D are orthonormal in L2(w) and L2(w−1) respec-
tively, then we can use Cauchy-Schwarz and the Bessel inequality in (10) and

get that |Γ1| ≤ [w]
1/2
A2

||fw1/2||L2(w−1)||gw−1/2||L2(w) = [w]
1/2
A2

||f ||L2(dx)||g||L2(dx)

7.4.2 Sums Γ2 and Γ3

Note that the sum Γ2 and the sum Γ3 are similar, so its enough to estimate
just one of them, the other follow by the same argument.

|Γ2| ≤
∑

I∈D([0,1])

∣∣〈fw−1/2, χI〉γw
−1

I 〈gw1/2, hwI 〉δwI
∣∣

=
∑

I∈D([0,1])

∣∣∣∣〈fw−1/2〉I |I|
dI
|I|〈gw1/2, hwI 〉

√
〈w〉I(1 − c2

I/|I|)
∣∣∣∣ (11)

≤
(

∑

I∈D[0,1]

∣∣〈fw−1/2〉2I |dI |2〈w〉I
)1/2( ∑

I∈D([0,1])

〈gw1/2, hwI 〉
2

)1/2

(12)

Above we used the fact that (1 − c2
I/|I|) ≤ 1 in (11) and then applied

Cauchy-Schwarz inequality in order to get (12). Arguing as we did in the
sum of Γ1 we can get the following estimative by Bessel’s inequality

(
∑

I∈D([0,1])

〈gw1/2, hwI 〉
2

)1/2

≤ ||g||L2(dx).
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Corollary 5 and Theorem 2, for w−1 instead of w, imply that
(

∑

I∈D([0,1])

∣∣〈fw−1/2〉I
2|dI |2〈w〉I

)1/2

≤ c[w]A2 ||f ||L2(dx).

Therefore |Γ2| + |Γ3| ≤ 2c[w]A2||f ||L2(dx)||g||L2(dx).

7.4.3 Sums Γ4

|Γ4| ≤
∑

I∈D([0,1])

∣∣∣〈fw−1/2〉I |I|〈gw1/2〉I |I|
cIdI
|I|2

∣∣∣ (13)

We will use Theorem 3 with αI = cIdI

|I| to estimate the sum above. In order

to to use theorem 2 we have to check 1 and 2, since [w]A2 = [w−1]A2 it is
enough to check just one of these conditions.

1
|J |
∫
J

(∑
I⊂J αI〈w〉IχI(x)

)2

w−1(x)dx = (14)

= 1
|J |

(∑
I⊂J α2

I〈w〉2I〈w−1〉I |I| + 2
∑

I,K,K⊂I⊂J αIαK〈w〉I〈w〉K〈w−1〉K |K|
)

Using the fact that αI = cIdI

|I| and
∣∣ dI√

|I|

∣∣ ≤ 1, then the first sum above

is bounded by 1
|J |
∑

I⊂J
(

cI√
|I|

)2〈w〉I |I|P (I) which is bounded by c[w]2A2
〈w〉J

by corollary 5. The last step is to estimate the second sum, again use the
definition of αI and αK to rewrite it as

2

|J |
∑

I⊂J

|cI |√
|I|

|dI |√
|I|

〈w〉I
∑

K⊂I

|cK |√
|K|

|dK|√
|K|

P (K)|K| (15)

By Lemma 6,
∑

K⊂I
|cK |√
|K|

|dK |√
|K|

P (K)|K| ≤ C[w]A2 |I| and then (15) is bounded

by C[w]A2

2
|J |
∑

I⊂J
|cI |√
|I|

|dI |√
|I|
〈w〉I |I| which is bounded by Lemma 7 by C[w]A2〈w〉J .

Therefore (13) is bounded by C[w]2A2
〈w〉J which allows us to use Theorem 2

and conclude that |Γ4| ≤ c[w]A2 ||f ||L2(dx)||g||L2(dx).
Therefore we have that all Γ’s are bounded by c[w]A2||f ||L2(dx)||g||L2(dx),

with constant c > 0 independent of r, which implies

||Trf ||L2(w) ≤ c[w]A2||f ||L2(w).

�

54



References

[1] O.Beznosova, Bellman Functions, Paraproducts, Haar Multipliers and
Weighted Inequalities, PhD. Dissertation (2008).

[2] S.M. Buckley, Summation conditions on weights, Michigan Math.40 (1993),
153–170;

[3] R. Fefferman and J. Pipher, Multiparameter operators and sharp weighted
inequalities, Amer. J. Math., 119 (1997), 337–369.

[4] S. Hukovic, F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and
sharp weighted inequalities for for square function,Oper. Theory Adv. Appl.,
113 (2000), 97–113.

[5] F. Nazarov, S. Treil and A. Volberg, The Bellman functions and the two-
weight inequalities for Haar Multipliers, Journal of the AMS, 12 (1999), 909–
928.

[6] S. Treil and A. Volberg, Wavelets and the angle between past and future,J.
Functional Anal., 143 (1997), 269–308.

[7] J. Wittwer, A sharp estimate on the norm of the martingale transform Math-
ematical Research Letters, 7 (2000), 1–12.

Jean Moraes, UNM

email: jmoraes@unm.edu

55



8 Sharp A2 inequality for Haar shift opera-

tors

after M. Lacey, S. Petermichl and M. C. Reguera [2]
A summary written by Diogo Oliveira e Silva

Abstract

The authors of [2] prove linear growth in the A2 characteristic for
weighted L2 inequalities involving Haar shift operators. We describe
how two new ingredients of the proof, a two weight T1 theorem and
a corona decomposition of the weight, come into play in the proof.

8.1 Introduction

It is a classical result [5] that the Hilbert transform H is bounded on Lp(w) if and
only if w ∈ Ap. Specializing to p = 2, the weight w satisfies

[w]A2 := sup
Q

( 1

|Q|

∫

Q
w
)( 1

|Q|

∫

Q
w−1

)
<∞

if and only if we have an inequality

‖Hf‖L2(w) ≤ C‖f‖L2(w),

where the constant C depends on the A2-constant [w]A2 . Determining the exact
dependent of C on [w]A2 is a difficult problem with nontrivial consequences. In [4]
the following optimal bound is proved:

‖Hf‖L2(w) . [w]A2‖f‖L2(w). (1)

Later work showed that if one replaces H by a Riesz transform Rj or the Beurling-
Ahlfors transform B, inequality (1) still holds. For applications of these results to
the theory of elliptic PDE, see [4].

Earlier proofs made use of Haar shift operators (which are entirely natural in
this context since H, Rj and B are all obtained by appropriate averaging of Haar
shifts) together with Bellman function techniques. The present paper [2] still deals
with Haar shift operators, but instead of Bellman functions uses a deep two weight
T1 theorem from [3], together with an appropriate corona decomposition of the
weight w to verify the relevant Carleson measure estimates.
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8.2 Haar shift operators

We will denote the family of all dyadic cubes in Rd by Q, and all cubes will from
now onwards be assumed dyadic. For Q ∈ Q and m ∈ N, we let Q(m) be the
m-fold parent of Q. By a Haar function hQ on a cube Q we mean any function
supported on Q which is constant on dyadic subcubes of Q and which satisfies the
following conditions:

(i)
∫
Q hQ = 0; (cancellation)

(ii) ‖hQ‖∞ ≤ |Q|−1/2. (size)

In particular, Haar functions are L2 normalized. They play an essential role in the
following definition:

Definition 1. We say that T is a Haar shift operator of index τ ∈ N0 on Rd if
Tf =

∑
Q∈Q〈f, gQ〉γQ, where

gQ, γQ ∈ span{hQ′ : Q′ ⊂ Q, 2−τd|Q| ≤ |Q′|}, and (2)

‖gQ‖∞, ‖γQ‖∞ ≤ |Q|−1/2. (3)

Let us turn to some illustrative examples of Haar shift operators.

Example 2. (Index 0) Given a bounded sequence α = (αQ)Q∈Q, consider the
Haar multiplier Tα given by

Tαf =
∑

Q∈Q
αQ〈f, hQ〉hQ.

If α ⊂ {−1, 1}N, then Tα is called the martingale transform, also known as the
dyadic Hilbert transform.

Example 3. (Index 1) For a one-dimensional example, consider the Haar shift S
given by

Sf =
∑

I∈Q
〈f, hI〉(hIr − hIl),

where Ir and Il denote the right and left halves of the interval I ⊂ R, respectively.

The purpose of conditions (2) and (3) is to ensure that Haar shift operators are
Calderón-Zygmund operators. That is the content of the following proposition:
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Proposition 4. Let T be a Haar shift operator of index τ on Rd. Then T is
bounded on L2(dx) with norm . τ , and T maps L1(dx) into L1,∞(dx) with norm
. 2τd.

We mention some elements that go into the proof of proposition 4. The cancella-
tion condition (2) allows us to use the lemma of Cotlar, Knapp and Stein, which
together with the size condition (3) implies ‖T‖L2(dx) . τ . The weak (1,1) bound
is obtained by the usual Calderón-Zygmund decomposition, where the analysis of
the “bad” part is simplified by noting that

x /∈ Q(τ) ⇒ T (1Qb)(x) = 0.

8.3 Main result and tools

The main result of [2] is the following:

Theorem 5. Let T be a Haar shift operator of index τ on Rd, and let w be an A2

weight. Then
‖T‖L2(w)→L2(w) .d,τ [w]A2 . (4)

We will sketch the proof given in [2] in the next section. For now we explore two
essential ingredients which go into the proof of theorem 5.

8.3.1 A two weight T1 theorem

The paper [3] gives an elegant characterization of some two weight inequalities in
L2. Its main result implies the following theorem:

Theorem 6. Let T be a Haar shift operator of index τ on Rd, and let σ and µ be
two positive measures. The inequality

‖T (σf)‖L2(µ) . ‖f‖L2(σ)

holds if and only if there exist constants C1, C2, C3 < ∞ such that for all cubes
Q,Q′, Q′′ with Q′, Q′′ ⊂ Q and 2−τd|Q| ≤ |Q′|, |Q′′|,

∣∣∣
∫

Q′′

T (σ1Q′)dµ
∣∣∣ ≤ C1σ(Q′)1/2µ(Q′′)1/2, (5)

‖T (σ1Q)‖L2(Q,µ) ≤ C2σ(Q)1/2 and (6)

‖T ∗(µ1Q)‖L2(Q,σ) ≤ C3µ(Q)1/2.

As a corollary of the proof, one gets that ‖T (σ·)‖L2(σ)→L2(µ) . C1 + C2 + C3.
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8.3.2 The corona decomposition

The following somewhat involved definition will play an essential role in the proof
of the main estimate:

Definition 7. Let Q′ ⊂ Q be any bounded collection of cubes, and let µ be a
positive measure. Let L ⊂ Q′. We call (Q′(L))L∈L a corona decomposition of Q′

with respect to µ if the following conditions hold:

(i) For every Q ∈ Q′, there exists L ∈ L such that Q ⊂ L. Let λ(Q) ∈ L denote
the minimal cube which contains Q, and set Q′(L) := {Q ∈ Q′ : λ(Q) = L}.
Then

µ(Q)

|Q| ≤ 4
µ(λ(Q))

|λ(Q)| ;

(ii) If L,L′ ∈ L are such that L′ ( L, then

4
µ(L)

|L| <
µ(L′)
|L′| .

Observe that the collections Q′(L) partition Q′. A construction of the corona
decomposition is accomplished via the following stopping-time argument from [1].
Let L0 consist of all Q ∈ Q′ which are maximal for set inclusion. Recursively,
Lm+1 shall consist of all Q in the set

⋃

L∈Lm

{
Q ∈ Q′ : Q ⊂ L and

µ(Q)

|Q| > 4
µ(L)

|L|
}

for which Q is maximal for set inclusion, and Q′(L) is the collection of all Q ∈ Q′

such that Q ⊂ L and Q * L′ for any L′ ∈ L :=
⋃
m≥0 Lm with L′ ( L.

A straightforward consequence of the construction is

∣∣∣
⋃

L∋L′(L

L′
∣∣∣ ≤ 1

4
|L|, L ∈ L. (7)

To what extent does (7) still hold if we replace Lebesgue measure by the weight
w? The following lemma gives a partial answer to this question:

Lemma 8. Let L be associated with the corona decomposition of an A2 weight w.
For any cube Q we have

∑

L∋L⊂Q
w(L) ≤ 16

9
[w]A2w(Q). (8)
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8.4 Idea of the proof of theorem 5

In order to be able to apply theorem 6, we start by noting that inequality (4) is
equivalent to the following two weight version:

‖T (fw)‖L2(w−1) . [w]A2‖f‖L2(w). (9)

To verify (9), it is enough to show that the following conditions hold for all cubes
Q,R of comparable size (i.e. such that 2−dτ |Q| ≤ |R| ≤ 2dτ |Q|):

|〈T (w1Q), w−11R〉| . [w]A2w(Q)1/2w−1(R)1/2; (10)

∫

Q
|T (w1Q)|2w−1dx . [w]2A2

w(Q). (11)

The “weak boundedness” inequality (10) can be derived from the “T1” condition
(11), and so we concentrate on verifying the latter. “Large scales” are easy to
handle, and so we will limit ourselves to showing that

∥∥∥
∑

Q:Q⊂Q0

〈w, gQ〉γQ
∥∥∥
L2(w−1)

. [w]A2w(Q0)
1/2. (12)

For cubes Q0 and collections of cubes Q′, we define two quantities:

H(Q0,Q′) :=
∑

Q′∋Q⊂Q0

〈w, gQ〉γQ;

H(Q′) := sup
Q0∈Q′

‖H(Q0,Q′)‖L2(w−1)

w(Q0)1/2
.

We pave the way to the corona decomposition by introducing the sets

Qn :=
{
Q ∈ Q : 2n−1 <

w(Q)

|Q|
w−1(Q)

|Q| ≤ 2n
}
,

which essentially fix the local A2 characteristic. Our goal is of course to show that

H(Q) . [w]A2 . For that purpose, it is enough to show that H(Qn) . 2n/2[w]
1/2
A2

.
Fix Q0 ∈ Qn which tests the supremum in the definition of H(Qn). Let

Pn := {Q ∈ Qn : Q ⊂ Q0},

and consider the corona decomposition (Pn(L))L∈Ln of Pn with respect to the
measure w (accomplished via the construction outlined in the previous section).
Note that Ln ⊂ Pn ⊂ Qn.
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We are seeking to prove

‖H(Q0,Qn)‖2
L2(w−1) . 2n[w]A2w(Q0). (13)

Since H(Q0,Qn) =
∑

L∈Ln
H(L,Pn(L)), the following lemma will be useful in the

proof of (13).

Lemma 9. The following uniform distributional estimates hold for L ∈ Ln:
∣∣∣
{
x ∈ L : |H(L,Pn(L))(x)| > Kt

w(L)

|L|
}∣∣∣ . e−t|L|; (14)

w−1
({
x ∈ L : |H(L,Pn(L))(x)| > Kt

w(L)

|L|
})

. e−tw−1(L). (15)

The proof of lemma 9 involves a further dyadic decomposition, and uses proposition
4 and a version of John-Nirenberg inequality. I will omit the details and present
them at the summer school.

Letting Hn(L) := |H(L,Pn(L))|, we have that

‖H(Q0,Qn)‖2
L2(w−1) ≤

∥∥∥
∑

L∈Ln

Hn(L)
∥∥∥

2

L2(w−1)

=
∑

L∈Ln

‖Hn(L)‖2
L2(w−1) + 2

∑

L∈Ln

∑

Ln∋L′(L

∫
Hn(L)Hn(L

′)w−1

= : I + II.

We estimate I (estimating II is similar but slightly more involved):

‖Hn(L)‖2
L2(w−1) .

(w(L)

|L|
)2
w−1(L) (by (15))

=w(L)
(w(L)

|L|
w−1(L)

|L|
)

≤2nw(L). (since L ∈ Ln ⊂ Qn)

The desired result now follows from lemma 8:

I . 2n
∑

L∈Ln

w(L) . 2n[w]A2w(Q0).

The author is indebted to Maria Carmen Reguera for a very useful discussion
of some parts of [2] and to Michael Christ for valuable recommendations on the
exposition.
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9 Heating of The Ahlfors-Beurling operator:

Weakly quasiregular maps on the plane are

quasiregular

after S. Petermichl and A. Volberg [8]
A summary written by Nikolaos Pattakos

Abstract

We outline a proof of a sharp weighted estimate of the Ahlfors-
Beurling operator and then we establish borderline regularity for so-
lutions of the Beltrami equation fz − µfz on the plane, where µ is a
bounded measurable function, ‖µ‖∞ = k < 1.

9.1 Introduction and notation

We are interested in the following Ahlfors-Beurling operator (dA denotes area
Lebesgue measure on C):

Tφ(z) =
1

π

∫ ∫
φ(ζ)dA(ζ)

(z − ζ)2

understood as a Calderón-Zygmund operator. For any function f on the plane,
it’s heat extension is given by the formula

f(y, t) =
1

πt

∫ ∫

R2

f(x)exp
(
− |x− y|2

t

)
dx1dx2, (y, t) ∈ R3

+

This is just the convolution of the function f with the fundamental solution of
the heat equation k(x, t) = 1

tπ exp(−(|x|2)/t)). We use the same notation for the
function and for it’s extension. Now we can define the heat Ap characteristic of a
weight w as:

Qheatw,p = sup
x∈R2,t>0

∫ ∫
w(x− y)k(y, t)dy1dy2 ·

(∫ ∫
w

− 1
(p−1) (x− y)k(y, t)dy1dy2

)p−1
.

The weights with finite Qheatw,p are called Ap weights. There is an extensive
theory of Ap weights (see, e.g.,[2], [10]). The usual definition i.e. weights with
finite
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Qclassw,p = sup
B(x,R)

( 1

|B(x,R)|

∫

B(x,R)
wdA

)( 1

|B(x,R)|

∫

B(x,R)|
w(− 1

p−1
)dA

)p−1

where the supremum is taken over all disks on the plane, differs from this
one but it actually describes the same class of weights. In the following µ is a
measurable function with ‖µ‖L∞ = k < 1. When we write F = Fµ we mean
that F solves the Beltrami equation Fz − µFz = 0, where Fz = 1

2(∂F∂x − i∂F∂y ) and

Fz = 1
2 (∂F∂x + i∂F∂y ). Solutions of this equation are called q-weakly quasiregular if

they belong to the space W 1,q
loc where 1 ≤ q. It is known that if q > 1+ k then a q-

weakly quasiregular map is actually in W 1,2+ǫ
loc for a certain positive ǫ. In particular

it is quasiregular i.e. in the space W 1,2
loc . In [2] one can find an easy example that

shows this is no longer true for q < 1 + k. Thus, the remaining question is about
the critical exponent q = 1 + k. In the same paper [2] the authors suggest the
following problem: Prove that the operators I − µT and I − Tµ have dense range
in L1+ 1

k (C) and are injective in L1+k(C). All of these questions are going to be
answered just by proving the sharp estimate for the Ahlfors-Beurling operator.

9.2 The sharp weighted estimate for the Ahlfors-Beurling
operator

Theorem 1. For any Ap weight w, p ≥ 2, we have

‖T‖Lp(wdA)→Lp(wdA) ≤ CQheatw,p .

In order to prove this we fix w to be an arbitrary positive function on the
plane and we assume that p = 2. The general case then follows from this one. The
operator T is given in the Fourier domain (ξ1, ξ2) by the multiplier

ζ

ζ
=

ζ
2

‖ζ‖2
=

(ξ1 − iξ2)
2

ξ21 + ξ22
=

ξ21
ξ21 + ξ22

− ξ22
ξ21 + ξ22

− 2i
ξ1ξ2

ξ21 + ξ22
.

Thus T can be written as T = R2
1 − R2

2 − 2iR1R2, where R1, R2 are the Riesz
tranforms on the plane. Another way of writing T is:

T = m1 − im2

where m1,m2 are multiplier operators and they are connected (as functions, not
as multiplier operators) by

m2 = m2 ◦ ρ,

64



where ρ is a π
4 rotation of the plane. So the multiplier operators are related by

m2 = Uρm1U
−1
ρ ,

where Uρ is an operator of ρ-rotation in the (x1, x2) plane. But for any operator
K,

‖UρKU−1
ρ ‖L2(wdA)→L2(wdA) = ‖K‖L2(w◦ρ−1dA)→L2(w◦ρ−1dA).

Combining this with the fact that Qheatw,2 = Qheatw◦ρ−1,2 for any rotation, we conclude

that we need the desired estimate only for m1 = R2
1 −R2

2. Actually we show that

‖R2
i ‖L2(wdA)→L2(wdA) ≤ CQheatw,2 , i = 1, 2.

Lemma 2. Let φ,ψ ∈ C∞
c . Then the integral

∫ ∫ ∫
R3

+

∂φ
∂x1

∂ψ
∂x1

dx1dx2dt converges

absolutely and

∫ ∫

R2

R2
1φ · ψdx1dx2 = −2

∫ ∫ ∫

R3
+

∂φ

∂x1

∂ψ

∂x1
dx1dx2dt

Our goal is to estimate the right-hand side of this equality and we do that by
using the following theorem:

Theorem 3. For any φ,ψ ∈ C∞
c and any positive function w on the plane, we

have
∫ ∫ ∫

R3
+

∣∣∣
∂φ

∂x1

∣∣∣
∣∣∣
∂ψ

∂x1

∣∣∣dx1dx2dt ≤ AQheatw,2

(∫ ∫

R2

|φ|2wdx1dx2+

∫ ∫

R2

|ψ|2 1

w
dx1dx2

)

where A is an absolute constant.

This immediately implies that

∫ ∫ ∫

R3
+

∣∣∣
∂φ

∂x1

∣∣∣
∣∣∣
∂ψ

∂x1

∣∣∣dx1dx2dt ≤ 2AQheatw,2 ‖φ‖L2(w)‖ψ‖L2(w−1)

by substituting φ/t, tψ into the equality of the theorem and minimizing over t.
But this is exactly what we want for the operator R2

1.

9.3 The boarderline regularity for solutions of the Bel-
trami equation on the plane

In [2] we can find the following theorems:

65



Theorem 4. Let f be a K-quasiconformal map where K = 1+k
1−k . Consider w =

|fz ◦ f−1|p−2 for p ∈ (1 + k, 1 + 1
k ). Then ‖(I − µT )−1‖Lp→Lp , ‖(I − Tµ)−1‖Lp→Lp

are bounded by c(k)‖T‖Lp(wdA)→Lp(wdA).

Theorem 5. Consider f = fµ, w = |fz ◦ f−1|p−2, p ∈ [2, 1 + 1
k ). If

‖T‖Lp(wdA)→Lp(wdA) ≤
C

1 + ( 1
k ) − p

,

then I−µT and I−Tµ have dense ranges in L1+ 1
k (C) and are injective in L1+k(C).

Theorem 6. Let f,w be as in theorem 5, and p ∈ [2, 1 + 1
k ). Then

Qheatw,p ≤ c

1 + 1
k − p

.

Now it is clear that that we have exactly what we want at the critical expo-
nents. The fact that weakly quasiregular maps are quasiregular follows from the
injectivity of I − µT at the critical exponent.

Theorem 7. Let ‖µ‖L∞ = k < 1. Then (1 + k)-quasiregular maps are also
quasiregular.

To prove this choose a function φ ∈ C∞
c and set G = Fφ where F is a solution

of the Beltrami equation in W 1,1+k
loc . Then

Gz − µGz = (φz − µφz)F.

So, G is a Cauchy transform of the compactly supported function ψ = Gz.
Then the above equality can be rewritten as ((φz − µφz)F = F0)

(I − µT )ψ = F0 ∈ L2(C).

In fact F ∈ W 1,1
loc , so by Sobolev’s theorem (φz − µφz)F ∈ L

2+2k
1−k (C) and

(φz − µφz)F has compact support. So it is in L2+ǫ(C). Looking at the last equal-
ity we can see that µ = 0 outside of suppφ and actually we can find an obvious
solution as a Neumann series. It converges in L2+ǫ(C) (we use the fact that ‖T‖ is
close to 1 when p is close to 2) and has its support in suppφ. So it is in L1+k(C)
as well. Let us call it ψ0. Now we have two solutions of the second equation
in L1+k(C)-ψ,ψ0. However we have already proved the injectivity of I − µT in
L1+k(C). Therefore, ψ = ψ0. Thus, Gz = ψ ∈ L2+ǫ(C). Therefore, the compactly
supported function G is in W 1,2+ǫ(C). This means that F is in W 1,2+ǫ

loc , so it is
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quasiregular and in particular continuous, open and so on.

We should remark the following: It is obvious that there is a positive absolute
constant a, such that aQclassw,p ≤ Qheatw,p . The opposite inequality is easy to prove

too. There is a positive absolute constant b such that Qheatw,p ≤ bQclassw,p (this is due
to F. Nazarov).
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10 Two weight estimates for Calderón-Zygmund

operators and corona decomposition for

non-doubling measures.

After F. Nazarov, S. Treil and A. Volberg [3]
A summary written by Maria Carmen Reguera

Abstract

We summarize the characterization of two weighted estimates for
Calderón-Zygmund operators asumming an extra property on the weights:
the pivotal conditions. This result was given by F. Nazarov, S. Treil
and A. Volberg in [3].

10.1 Introduction

Let w, ν be non-negative locally integrable functions on the real line R. And let
H be the Hilbert transform,

Hf(x) := p.v.

∫
1

x− y
f(y)dy

We want to characterize boundedness of H from L2(w) to L2(ν). A more suitable
and commonly used reformulation of this problem is to find conditions to prove
boundedness of Hµ from L2(µ) to L2(ν), where Hµ(f) := H(µf) and µ = w−1,
the dual measure of w.

If w = ν and w > 0 a.e., the problem was solved in early seventies by R. Hunt,
B. Muckenhoupt and R. Wheeden, they proved that H : L2(w) 7→ L2(w) if and
only if the weight w is in A2, i.e.,

‖w‖A2 := sup
I⊂R

〈w〉I 〈w−1〉I <∞ , (1)

where 〈w〉I = 1
|I|
∫
I wdx.

In the 2-weighted case, it seemed natural to provide characteristics in the spirit of
(1). But even replacing the 2-weighted version of (1) by the stronger condition

‖µ, ν‖PA2 = sup
z∈C+

Pµ(z)Pν(z) ≤ Cp , (2)

where

Pµ(z) :=
1

π

∫

R

ℑz
(ℜz − t)2 + (ℑz)2 dt ,
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we will have a necessary (see [2]) but not sufficient condition (work of F. Nazarov).
In turn, the conditions that paper [2] and [3] present are the ones that E. Sawyer
used to characterize boundedness of positive operators in the 2-weighted setting.
The heuristic is the same as the one used by G. David and J.L. Journé for the T1
theorem:

“The operator is bounded between two weighted L2 spaces if and only if it is
bounded on a family of simple test functions.”
Proving boundedness of singular integrals in the two weighted setting is a very
difficult task. On one hand, one has to deal with the singularity of the kernel, on
the other hand, the degeneracy of the two measures µ, ν. To avoid these difficulties
the main result of [3] assumes an extra condition on the weights µ and ν, the
“pivotal conditions”. We present here the instance of the Hilbert transform, for
a general Calderón-Zygmund operator a reformulated pivotal condition is needed,
see [3].

Definition 1. Given an interval I and any measure dµ on the real line, we write

PI(dµ) :=
1

π

∫

R

|I|
|I|2 + (c(I) − t)2

dµ(t) .

This is the Poisson integral at the point whose real part is the center of the interval,
and imaginary part is the length of the interval.

Let I ∈ Dµ. Let {Iα} be a finite family of disjoint subintervals of I belonging
to the same lattice. The following is the so-called pivotal property:

∑

α

[PIα(1I\Iαdµ)]2ν(Iα) ≤ P µ(I) . (3)

We are now ready to state the main theorem of [2].

Theorem 2. Let µ, ν be arbitrary positive measures. Let us assume the measures
µ, ν satisfy extra conditions: the pivotal property (3) and the corresponding “dual”,
where µ and ν interchange roles. Then Hµ is bounded from L2(µ) to L2(ν) if and
only if the following inequalities are satisfied

‖1IHµ(1I)‖L2(ν) ≤ Cχν(I), ∀I ⊂ R , (4)

‖1IHν(1I)‖L2(µ) ≤ Cχµ(I), ∀I ⊂ R , (5)

‖µ, ν‖PA2 = sup
z∈C+

Pµ(z)Pν(z) ≤ Cp . (6)
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The pivotal condition is not necessary (see [1]), nevertheless there are interest-
ing cases where the pivotal condition is satisfied. For instance, if the measures µ
and ν are doubling and their support is the whole Rn and the operators are either
the Hilbert transform or the Riesz transforms. It is also true when we assume
boundedness of Mµ from L2(µ) to L2(ν) and Mν from L2(ν) to L2(µ), where M
is the Hardy-Littlewood maximal operator. This assumption is very natural if we
consider that this is the case when we have just one measure.

10.2 Proof of Main Theorem: Initial considerations

In this summary we will only consider sufficiency.
In what follows, | · | stands for Lebesgue measure, 1E is the characteristic function
on the set E. Let f ∈ L2(µ), g ∈ L2(ν) be two test functions with compact
support contained in Iµ0 and Iν0 respectively and with zero mean. Let Dµ, Dν be
two dyadic lattices of R. Let us consider the weighted Haar functions hµI , defined
to be supported in I, have constant value on each of the dyadic halves of I, with
mean zero and ‖hµI ‖L2(µ) = 1. Similarly, we define hνJ with J ∈ Dν . We also
introduce the operators ∆µ

I (f) := (f, hµI )µh
µ
I , I ∈ Dµ, I ⊂ Iµ0 . ∆ν

J is defined in
an analogous manner.

It is easy to see that we can decompose our linear form as

(Hµf, g)ν =
∑

I∈Dµ,J∈Dν

(Hµ∆
µ
I f,∆

ν
Jg)ν . (7)

We will make one more reduction, for that purpose we will use the “good-bad”
decomposition from the work of F. Nazarov, S. Treil and A. Volberg on non-
homegenous spaces. We will not enter in the precise definition of good intervals,
essentially I is good if there is no J so that I can be close to its boundary or its
center. For more details we refer the reader to any of the papers in the bibliography.

Our problem is reduced to estimate

(Hµf, g)ν =
∑

I∈Dµ,J∈Dν

I,J are good

(Hµ∆
µ
I f,∆

ν
Jg)ν . (8)

Let Dµ,Dν be fixed. Let F := {(I, J) : I, J are good}. Let r be a fixed number
that comes from the definition of good intervals. We can decompose the set F as
F = F1 ∪ F2 ∪ F∗

2 ∪ F3 ∪ F∗
3 ∪ F4 ∪ F∗

4 , where F1 := {(I, J) : 2−r|J | ≤ |I| ≤
2r|J |,dist(I, J) ≤ max(|I|, |J |)}, F2 := {(I, J) : 2−r|J | ≤ |I| ≤ |J |,dist(I, J) ≥
|J |}, F3 := {(I, J) : |I| < 2−r|J |, I ∩ J = ∅}, and F4 := {(I, J) : |J | <
2−r|I|, J ⊂ I}. We are omitting the definition of the sets F∗

i , they are defined and
treated in a symmetric fashion. Boundedness when we restrict to the set F1 is
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obtained through the testing conditions (4) and (5). Boundedness on the sets F2

and F3 are obtained using (2). Finally, in the next section we consider the sum in
F4. This is the term that most clearly has the paraproduct structure in it.

10.3 Corona decomposition

We are left to analyze the following piece

τ :=
∑

(I,J)∈F4

(Hµ∆
µ
I f,∆

ν
Jg)ν . (9)

We are going to split τ into three terms. Let IJ denote the half of I, which
contains J . And In is the other half. Let Î denote an arbitrary super interval of
IJ in the same lattice: Î ∈ Dµ. We write

(Hµ∆
µ
I f,∆

ν
Jg)ν = (Hµ(1In∆µ

I f),∆ν
Jg)ν + (Hµ(1IJ ∆µ

I f),∆ν
Jg)ν =

(Hµ(1In∆µ
I f),∆ν

Jg)ν + 〈∆µ
I f〉µ,IJ (Hµ(1Î),∆

ν
Jg)ν − 〈∆µ

I f〉µ,IJ (Hµ(1Î\IJ ),∆ν
Jg)ν .

We will name them according to the notation in [2]: the first one is “the neighbor
term”, the second one is “the difficult term” and the third one is “the stopping
term”. The proof of boundedness of the neighbor term follows the line of reasoning
of the F2 and F3 terms and we refer the reader to section 7.1 in [2]. The proof
of the paraproduct and stopping terms will require the following reorganization of
the intervals. We first define the collection of stopping intervals.

Definition 3. (Stopping criteria) Given any interval Î, set S(Î) to be the maximal
Dµ strict subintervals I $ Î such that

[
PI(1Î\Idµ)

]2
ν(I) ≥ Bµ(I), (10)

for B a fixed constant such that B > 2P . We start with Iµ0 and define S to be the
set of all stopping intervals.

We now define the associated Corona Decomposition.

Definition 4. (Corona decomposition) For S ∈ S, we set P(S) to be all the pairs
of intervals (I, J) such that

1. I ∈ Dµ, J ∈ Dν, J ⊂ I, and |J | < 2−r|I|.

2. S is the S-parent of IJ , the child of I that contains J .
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Let Cµ(S) to be all those I ∈ Dµ such that S is a minimal member of S that
contains a Dµ-child of I. Cν(S) is the set of all those J ∈ Dν such that S is the
smallest member of S that contains J and satisfies 2r|J | < |S|.

Notice that the Corona decomposition allow us to organize the set of pair of in-
tervals F4 =

⋃
S∈S P(S).

We now go back to analyze the stopping term:

T :=
∑

S∈S

∑

(I,J)∈P(S)

|〈∆µ
I f〉µ,IJ ||(Hµ(1S\IJ ),∆ν

Jg)ν | .

The proof follows from the estimate below and the crucial fact that IJ is not a
stopping interval and the stopping inequality (10) is reversed. This is the place
were we need the precise definition of stopping interval.

|〈∆µ
I f〉µ,IJ ||(Hµ(1Î\IJ ),∆ν

Jg)ν | ≤ A
( |J |
|I|
)1/2( ν(J)

µ(IJ)

)1/2
PIJ (1Î\IJ dµ)‖∆ν

Jg‖ν‖∆µ
I f‖µ .

10.3.1 The difficult term: the paraproduct

In this section r(S, S′) stands for the distance in the tree formed by the collection
S. πS(S) and π(S) will denote the parent of S in the collection S and the collection
Dµ respectively. And P will denote the orthogonal projection onto the span of Haar
fuctions hνJ with J ∈ Cν(S). We now write the paraproduct term as

∑

S∈S

∑

(I,J)∈P(S)

〈∆µ
I f〉µ,IJ · 〈Hµ(1S),∆ν

Jg〉ν .

There is a subtle point that should be mentioned, different clusters P(S) and
P(S′) could have common J ′s, what prevents from having orthogonality among
the clusters. Taking that into account, we can decompose the operator in the
following two pieces.

Θ1 :=
∑

S∈S

∑

(I,J)∈P(S)
J∈Cν(S)

〈∆µ
I f〉µ,IJ · 〈Hµ(1S),∆ν

Jg〉ν , (11)

Θ2 :=
∑

S∈S\{I0}

∑

t≥1

∑

(I,J)∈P(S̃)

J∈Cν(S), S⊂S̃, r(S,S̃)=t

〈∆µ
I f〉µ,IJ ·

〈
Hµ(1S̃),∆ν

Jg
〉
ν
. (12)

(11) is the main term and is a paraproduct. The following lemma states the
Carleson estimate needed in order to appeal to Carleson’s embedding theorem.
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The fact that IJ is not a stopping interval and we can reverse inequality (10) is
crucial in the proof.

Lemma 5. Let l(J) denotes the smallest children of I ∈ Cµ(S) containing J . Let
{βI} be the sequence

βI =
∑

J∈Cν(S) : l(J)=I

∣∣〈Hµ(1S),∆ν
Jg〉ν

∣∣2 , then

∑

I∈Cµ(S),I⊂K
βI ≤ C(B + Cχ)µ(K), K ∈ Dµ.

(12) is the error term. When r(S, S̃) = t we get extra decay from the pivotal
condition, what allows to overcome the lack of orthogonality. The study of this
term can be reduced to the study of the following two paraproducts.

Ξ1f :=
∑

S∈S

∑

t≥1, S⊂S̃ r(S,S̃)=t

〈f〉µ,π(S̃))PS(Hµ1πS(S̃)\S̃) . (13)

Ξ2f :=
∑

S∈S
〈f〉µ,π(S)PS(Hµ1πS(S)) , (14)

Boundedness of Ξ1 is a consequence of Carleson embedding theorem. An im-
provement with geometrical decay on t of the Carleson measure estimate will be
obtained. This is the term where the difficulty of not having doubling measures
appears, what saves the argument is the use of the pivotal condition (3).

Theorem 6. Let αt(S̃) be the sequence

αt(S̃) :=
∑

S:S⊂S̃, r(S,S̃)=t

∥∥∥PνSH(µ1πS(S̃)\S̃)
∥∥∥

2

L2(ν)
(15)

The following Carleson measure estimate holds:

∑

S∈S : π(S)⊂K
αt(S) . 2−tC(Cχ, P )µ(K) , K ∈ Dµ. (16)

The second paraproduct Ξ2 can be handle using similar arguments.
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11 The Bellman Function, The Two-Weight

Hilbert Transform, and Embeddings of the

Model Spaces Kθ

after F. Nazarov and A. Volberg [1]
A summary written by Alexander Reznikov

Abstract

We study some natural conditions of boundedness of the Hilbert
Transform and prove that they are not sufficient.

11.1 Basic Definitions

We consider a unit disc D ⊂ C and a unit circle T. We say that θ is an inner
function if it’s bounded and analytic in D and it’s boundary values on T are
unimodular, namely, |θ(ζ)| = 1 for m-a.e. ζ ∈ T. Here m is the normalized
Lebesgue measure on T.

By H2 we denote set of analytic functions, who’s boundary values lie in
L2(T,m). Denote

θH2 = {θf : f ∈ H2},
Kθ = H2 ⊖ θH2.

From now on we assume θ(0) = 0. We now introduce a new measure on T.
Namely, let σ be a measure on T such that

(1 − θ(λ))−1 =

∫

T

dσ(ζ)

1 − λζ
, ∀λ ∈ D.

Note that σ(T) = 1. It is a famous construction from Complex Analysis, developed
by Clark and Poltoratski. For example, the transformation

(U∗f)(λ) = (1 − θ(λ))

∫

T

f(ζ)dσ(ζ)

1 − λζ

is unitary from L2(σ) to Kθ. There is a natural question: when U∗ is bounded
from L2(σ) to L2(µ)? We can study only such µ that supports of µ and σ are
disjoint, and θ is well-defined µ-a.e.

Finally, we introduce a Hilbert Transform

Hσf =

∫

T

fdσ(ζ)

1 − λζ
, f ∈ L2(σ).
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11.2 Questions, which are answered in the paper

We now move on and state some connected questions, which are studied in the
paper.

11.2.1 Two-weighted Hilbert Transform

We introduce an operator

Huf =

∫
fudx

x− y

and ask if Hu is bounded as an operator L2(u) → L2(v).

Remark 1. If u = v then Hu is bounded if and only if u ∈ A2.

By Pu(z) we denote the Harmonic extention of u from R to C+. Here is the
conjecture.

Conjecture 2. Assume that

Pu(z)Pv(z) 6 C∀z ∈ C+ (1)

‖HuχI‖2
L2(v) 6 Cu(I), ∀ interval I. (2)

Then Hu is bounded.

We prove

Theorem 3. Conjecture 2 is false.

11.2.2 Hilbert Transform Hσ

We return now to our Kθ. We denote

Pµ(λ) =

∫

ClD

1 − |λ|2
|1 − λz|2

dµ(z).

Pµ is the Poisson extension of µ. We state the conjecture.

Conjecture 4. Assume that

Pµ(z)Pσ(z) 6 A2∀z ∈ D (3)

‖Hσ1‖2
L2(µ) 6 A1. (4)

Then Hσ : L2(σ) → L2(µ) is bounded.
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This is also false, and here is what will be proven.

Theorem 5. There exists a measure σ, which is a finite linear combination of
delta-measures, and a measure µ such that:

suppσ ∩ suppµ = ∅, (5)

σ(T) = 1, (6)

and (3) and (4) are true. On the other hand,

‖Hµ1‖L2(σ) > C,

where C is as large as we want.

11.3 The Dyadic model and Bellman approach

In this part of the paper authors study some discrete analog of the Hilbert Trans-
form. To state the main result, we need some more notation.

We fix an interval [0, 1] and let D be a dyadic lattice for this interval. By 〈f〉
J

we denote the average of f over an interval J ⊂ I:

〈f〉
J

=
1

|J |

∫

J

f(t)dt.

If we average over the whole [0, 1], we drop the subindex and write 〈f〉. Next, let

∆If = 〈f〉
I−

− 〈f〉
I+
,

where I± is right and left half of I. Let now Dm = {I ∈ D, |I| = 2−m}. Our goal
is to construct two functions U and V such that

1. U and V are constants on every I ∈ Dm;

2. 〈U〉
I
〈V 〉

I
6 A0 for every I ∈ D;

3.
∑
I∈D

(∆IU)2〈V 〉
I
|I| 6 〈U〉;

4.
∑
I∈D

(∆IV )2〈U〉
I
|I| > C〈V 〉.

We also guarantee that

〈U〉
I+

〈U〉
I−

,
〈V 〉

I+

〈V 〉
I−

∈ (1 − τ, 1 + τ), I ∈ D.

Here C is as big as we want and τ is as small as we want.
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Sketch of the proof. Fix a dyadic interval J . For every point x = (x1, x2, x3) such
that x3 6 x1, x1x2 6 1 we consider a family

Fx =
{

(U, V ) : 〈U〉
J

= x1, 〈V 〉
J

= x2
1

|J |
∑

I∈D,I⊂J
(∆IU)2〈V 〉

I
|I| = x3,

〈U〉
I
〈V 〉

I
6 1,

1

|I|
∑

ℓ⊂I,ℓ∈D
(∆ℓU)2〈V 〉

ℓ
|ℓ| 6 〈U〉

I
, I ∈ D, I ⊂ J

}
.

On the set Ω = {x = (x1, x2, x3) : 0 6 x1,2,3, x1x2 6 1, x3 6 x1} we define a
function

B(x) = sup





1

|J |
∑

I∈D,I⊂J
(∆IV )2〈U〉

I
|I| : (U, V ) ∈ Fx



 .

Lemma 6. If α = (α1, α2, α3) is such that x, x± α, (x1, x2, x3 + α2
1x2) ∈ Ω then

B(x+ α) +B(x− α)

2
+ α2

2x1 6 B(x1, x2, x3 + α2
1x2).

Assume we have proved this lemma. Then, by homogeneity, we get

B(x) = x2ξ(x1x2, x2x3).

Lemma 7. ξ is unbounded.

This lemma gives us that

∀C ∃x : B(x) > Cx2,

which is exactly what we need.

11.4 References

In addition to what is said, we want to cite few papers for further reading. The
Bellman Function was considered in many papers by Nazarov, Treil, Vasyunin and
Volberg. For example, [2], [3], [6].

We hardly recommend the work [4], which is the first work, where Bellman
approach was used in Harmonic Analysis.

We also refer to a paper [5] because it describes the “jump” from dyadic model
to the Hilbert Transform.

Reader can find much more references and information on the web-site
http://sashavolberg.files.wordpress.com/2010/05/vvbell05 24 10.pdf
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12 A1 bounds for Calderón-Zygmund opera-

tors related to a problem of Muckenhoupt

and Weeden

after Andrei K. Lerner, Sheldy Ombrosi, and Carlos Péres [1]
A summary written by Prabath Silva

Abstract

We summarize the paper [1] here. Also we mention some recent
improvements of the results from [2].

12.1 Introduction

Let T be a Calderón-Zygmund singular integral operator and w a weight (i.e.,
w ≥ 0 and w ∈ L1

loc(R
n)). The Muckenhoupt and Weeden conjecture says

||Tf ||L1,∞(w) ≤ c||f ||L1(Mw); (1)

here M is the Hardy-Littlewood maximal operator. It is well known that (1) is
true if we replace T by M . In this paper we have improvements towards the weak
Muckenhoupt and Weeden conjecture,

||Tf ||L1,∞(w) ≤ c||w||A1 ||f ||L1(w). (2)

First we state the main result in [3] by the same authors which contains a
result towards the weak Muckenhoupt and Weeden conjecture.

Theorem 1. Let T be a Calderón-Zygmund operator. Then

||Tf ||Lp(w) ≤ cνp||w||A1 ||f ||Lp(w) (1 < p <∞) (3)

and
||Tf ||L1,∞(w) ≤ cφ(||w||A1)||f ||L1(w); (4)

here νp = p2

p−1 log(e+ 1
p−1) and φ(t) = t(1 + log+t)(1 + log+log+t).

The main theorem in paper [1] is an improvement of the above theorem.

Theorem 2. Let T be a Calderón-Zygmund operator. Then

||Tf ||Lp(w) ≤ cpp′||w||A1 ||f ||Lp(w) (1 < p <∞) (5)

and
||Tf ||L1,∞(w) ≤ c||w||A1(1 + log||w||A1)||f ||L1(w), (6)

where c = c(n, T ).
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The improvement of νp = pp′ in here is optimal. As a corollary to the main
theorem we get

Corollary 3. Let 1 < p < ∞ and let T be a Calderón-Zygmund operator. Also,
let w ∈ Ap; then

||Tf ||Lp,∞(w) ≤ c||w||Ap(1 + log||w||Ap)||f ||Lp(w), (7)

By a duality argument we get the following Sawer-type testing condition,

Corollary 4. Let 1 < p < ∞ and let T be a Calderón-Zygmund operator. Also,
let w ∈ Ap; then for any measurable set E,

||T (σχE)||Lp(w) ≤ c||w||
1

p−1

Ap
(1 + log||w||Ap)σ(E)1/p. (8)

A recent result in [2] solved the problem of sharp weighted estimates for general
Calderón-Zygmund operators.

Theorem 5. Let 1 < p <∞ and let T be a Calderón-Zygmund operator. Also let
w ∈ Ap, then

||Tf ||Lp(w) ≤ c||w||max(1,1/(p−1))
Ap

||f ||Lp(w), (9)

Note that this result give improvement for (5) and (7) for p > 2 in terms of
the ||w||Ap . Also note that (2) gives better estimates when p > 2 in term of ||w||Ap

for f = σχE than in (9).

12.2 Proof of the main theorem

The new ingredient to the proof of the theorem is the following lemma, the rest of
the proof is similar to the proof in [3].

Lemma 6. Let T be a Calderón-Zygmund operator. There exists a constant c =
c(n, T ) such that for any weight w and for any p, r ≥ 1,

∥∥∥∥
Tf

Mrw

∥∥∥∥
Lp(Mrw)

≤ cp

∥∥∥∥
Mf

Mrw

∥∥∥∥
Lp(Mrw)

, (10)

where Mrw = M(wr)1/r.

Once we have this lemma the proof of (5) follows form the duality argument
and equation (6) follows from Calderón-Zygmund decomposition.

To prove the lemma we need the following two lemmas.
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Lemma 7. Let T be a Calderón-Zygmund operator and let w ∈ Ap, p ≥ 1. Then
there is a constant c = c(n, p, T ) such that

||Tf ||L1(w) ≤ c||w||Ap ||Mf ||L1(w). (11)

Proof of this lemma follows from a sharp good-λ inequality from [4] relating
T ∗, the maximal truncation of T , with M and a sharp A∞ condition from [5] for
Ap weights.

Lemma 8. Let 1 < s <∞, and let v be a weight. Then there exists a nonnegative
sublinear operator R satisfying the following properties:

1. h ≤ R(h)

2. ||R(h)||Ls(v) ≤ 2||h||Ls(v)

3. R(h)v1/s ∈ A1 with ||R(h)v1/s||A1 ≤ cs′.

We can take R(h) =
∑∞

k=0
1
2k

Sk(h)
(||S||Ls(v))k where S(h) = M(hv1/s)

v1/s .

Having these two lemmas we can prove Lemma 6. By duality we have

∥∥∥∥
Tf

Mrw

∥∥∥∥
Lp(Mrw)

= sup
||h||

Lp′(Mrw)
=1

∫

Rn

|Tf |hdx

Now applying Lemma 8 with s = p′ and v = Mrw, and using factorization
properties of Ap weights with properties from the Lemma 8, we get ||R(h)||A3 ≤ cp.

∫

Rn

|Tf |hdx ≤
∫

Rn

|Tf |R(h)dx ≤ c||R(h)||A3

∫

Rn

M(f)R(h)dx

≤ cp

∥∥∥∥
Mf

Mrw

∥∥∥∥
Lp(Mrw)

||h||Lp′ (Mrw).

Here we used (11) and property 2 in Lemma 8.
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13 Two weight inequalities for discrete posi-

tive operators

after M. Lacey, E. Sawyer, I. Uriarte-Tuero [1]
A summary written by Michal Tryniecki

Abstract

We characterize two weight inequalities for general positive dyadic
operators

||Tτ(fσ)||Lq(w) . ||f ||Lp(σ), 1 < p ≤ q <∞

in terms of Sawyer-type testing conditions.

13.1 Introduction

The main theorem that we are interested in is a generalization of the Embedding
Inequality of Sawyer and Nazarov-Treil-Volberg. The inequality was obtained by
Nazarov-Treil Volberg [2] as a deep extension of the Theorem of Eric Sawyer [3]
on two-weight inequalities. The proof by Nazarov-Treil Volberg uses the Bellman
Function approach. We present here the work of Lacey, Sawyer, Uriarte-Tuero
which extends the previous results to higher dimensions (new for d ≥ 2) and
works for general case 1 < p ≤ q <∞ (as opposed to p = q = 2).

We start with the presentation of the previous result. Let Q be a choice of
dyadic cubes in Rd. For a cube Q we define the average of f over Q:

EQf := |Q|−1

∫

Q
fdx.

By a weight we mean a non-negative locally integrable function w : Rd → [0,∞).
For such weights and ”nice” sets (like dyadic cubes) Q we set:

w(Q) :=

∫

Q
wdx.

Theorem 1 (Embedding Inequality of Sawyer and Nazarov-Treil-Volberg). Let
{τQ : Q} be non-negative constants. Let w, σ be weights. Define:

C2
1 := sup

R
σ(R)−1

∫
[
∑

Q⊂R
τQ1QEQσ]2w,
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C2
2 := sup

R
w(R)−1

∫
[
∑

Q⊂R
τQ1QEQw]2σ,

C3 := sup
||f ||L2(σ)=1

sup
||g||L2(w)=1

∑

Q∈Q
τQEQ(fσ) · EQ(gw)|Q|.

Then we have the equivalence C3 ≃ C1 + C2.

Now we will present the announced extension of this theorem. We will need
some more definitions.
Let us set:

EwQf := w(Q)−1

∫

Q
fwdx.

The dyadic maximal function associated to w is given by:

Mwf(x) := sup
Q∈Q

1Q(x)EwQ|f |.

The following fact (proved exactly in the same way as the corresponding statement
without weights) and its ”linearized” version will be essential in the proof:

Theorem 2. For 1 < p <∞ we have:

||Mwf ||Lp(w) . ||f ||Lp(w). (1)

For a dyadic cube Q let Q(1) denote its dyadic parent, and define Q(ρ) induc-
tively for ρ ≥ 2. Fix non-negative constants τ = {τQ : Q ∈ Q} and define linear
operator Tτ and its two ”localizations” corresponding to a dyadic cube R:

Tf :=
∑

Q∈Q
τQ · EQf · 1Q,

T inR f :=
∑

Q∈Q
Q⊂R

τQ · EQf · 1Q,

T outR f :=
∑

Q∈Q
Q⊃R

τQ · EQf · 1Q,

Notice that T out
τ ,Rf is constant on R and we have the following decomposition:

Tτf(x) = T in
τ,Rf(x) + T out

τ,R(1)f(x′), where x ∈ R, x′ ∈ R(1).

We introduce the so called local and global testing conditions. Let 1 < p ≤ q <∞
and let p′, q′ be conjugate to p, q. Set:

[[σ,w]]Locp,q := sup
R∈Q

w(R)−1/q′ ||T inR (w1R)||Lp′ (σ)
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[[σ,w]]Glop,q := sup
R∈Q

w(R)−1/q′ ||T outR (w1R)||Lp′ (σ)

We say that the testing condition (local or global) holds if the above are finite.
The main theorem we are interested in characterizes the two weight inequalities
in terms of the testing conditions:

Theorem 3. Main result. We have the equivalences of norms :

||T (σ·)||Lp(σ)7→Lq(w) ≃ [[σ,w]]Locp,q + [[w, σ]]Locq′ ,p′, 1 < p ≤ q <∞,

||T (σ·)||Lp(σ)7→Lq(w) ≃ [[σ,w]]Glop,q + [[w, σ]]Gloq′,p′ , 1 < p < q <∞.

Note that for p = q = 2 we get the Embedding Inequality of Sawyer and Nazarov-
Treil-Volberg.

In the next section we will sketch the proof of this result.The first step will be to
show that weak-type inequalities are true, namely we prove:

Theorem 4. Weak-type inequality. We have the equivalence of norms:

||T (σ·)||Lp(σ)7→Lq,∞(w) ≃ [[σ,w]]Locp,q , 1 < p ≤ q <∞,

||T (σ·)||Lp(σ)7→Lq,∞(w) ≃ [[σ,w]]Glop,q , 1 < p < q <∞.

13.2 Sketch of proof

13.2.1 The weak case

The necessity of the testing conditions is straightforward. If we assume that N =
||T (σ·)||Lp(σ)7→Lq,∞(w) <∞ then by the duality for Lorentz spaces we have:

||T (fw)||Lp′ (σ) ≤ N||f ||Lq′,1(w).

Applying this to f = 1Q and decomposing T into local and global parts we get
both testing conditions.
Now we show that testing conditions imply the weak-type bound for T . Let’s start
with the local case. We fix smooth, compactly supported f ∈ Lp(σ) and λ > 0.
Fix Q0 ∈ Qλ a cube in the family of maximal dyadic cubes in {T (fσ) > λ} that
intersect {T (fσ) > 2λ}. It follows from maximality that:

λ ≤ T inQ0
(fσ)(x) for x ∈ Q0 ∩ {T (fσ)(x) > 2λ}. (2)
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Now we split the cubes in Qλ into two groups, the first one E consisting of cubes
for which w(Q ∩ {T (fσ) > 2λ}) < ηw(Q), where η = 2−q−1.
We estimate:

(2λ)qw(T (fσ) > 2λ) ≤ η(2λ)q
∑

Q∈E
w(Q) + η−q

∑

Q∈Qλ\E
[

1

w(Q)

∫

Q
T inQ (fσ)wdx]qw(q)

≤ η2qλqw(T (fσ) > λ) + Cη−q([[σ,w]]Locp,q )q||f ||qLp(σ)

where the first inequality follows from the fact that for cubes in the second group
we have (2) and the second one from the self duality of T in. The estimate follows
if we take λ so that the left-hand side is close to maximal (it is bounded by the
assumptions on f).
Now the global case. Let Q0 be as before. The idea here will be a comparison to
the following maximal function involving both weights in the definition:

Mf(x) := sup
Q⊂Q0

1Q(x)

[
w(Q)−1

∫

Q
fpσ

]1/p

.

After some nontrivial calculations we are able to show that for x ∈ Q0 ∩{T (fσ) >
2λ} we have:

λ . [[σ,w]]Glop,q w(Q0)
1/p−1/qMf(x).

Remark: It is this estimate that requires strict inequality p < q.
¿From here for each maximal Q0 we get the following estimate:

λqw(Q0 ∩ {T (fσ) > 2λ}) . ([[σ,w]]Glop,q )pλq−pw(Q0)
1−p/q

∫

Q0

fpσ.

By summing over all maximal Q0 and applying Hölder inequality we get:

(2λ)qw(T (fσ) > 2λ) . ([[σ,w]]Glop,q )p[λqw(T (fσ) > λ)]1−p/q
∫
fpσ.

from which the result follows in the same manner as for the local case.

13.2.2 The strong case

The proof of the strong type inequality is based on several ideas. We will use the
”linearized” form of the maximal function. Let {E(Q) : Q ∈ Q} be any selection
of measurable disjoint sets E(Q) ⊂ Q indexed by the dyadic cubes. Define the
linear operator:

Lf(x) :=
∑

Q∈Q
1E(Q)(x)E

w
Qf.
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This is a ”linearized” form of the maximal function in the sense that the bound
(1) is equivalent to the bound ||Lf ||Lp(w) . ||f ||Lp(w) with implied constant inde-
pendent of w and the sets E(Q).
We are assuming that

L = [[σ,w]]Locp,q , L∗ = [[w, σ]]Locq′,p′

are finite. By the weak-type case it follows that

sup
Q∈Q

w(Q)−1/q′ ||T (1Qw)||Lp′ (σ) . L.

We will be working with open sets Ωk = {T (fσ) > 2k}. For a fixed integer ρ ≥ 2
we construct collections Qk of disjoint dyadic cubes that have a Whitney-style
properties:

disjoint cover : Ωk =
⋃

Q∈Qk

Q,

Whitney condition : Q(ρ) ⊂ Ωk, Q
(ρ+1) ∩ Ωc

k 6= ∅,
finite overlap :

∑

Q∈Qk

1Q(ρ) . 1Ωk
,

crowd control : sup
Q∈Qk

♯{Q′ ∈ Qk : Q′ ∩Q(ρ) 6= ∅} . 1,

nested property Q ∈ Qk, Q
′ ∈ Ql, Q ( Q′ ⇒ k > l.

To construct such a decomposition it is enough to take Qk to be the maximal
dyadic cubes in Ωk such that the Whitney condition holds. The following easy
lemma will be used to decompose our operator:

Lemma 5. Maximum Principle For all k and Q ∈ Qk we have:

max{T out
Q(ρ)(f1Q(ρ+1)σ)(x), T (1(Q(ρ+1))fσ)(x)} ≤ 2k, for x ∈ Q.

For Q ∈ Qk we define the sets:

Ek(Q) = Q ∩ (Ωk+4 \ Ωk+5).

After decomposing T into the local and global part the maximum principle gives
us for x ∈ Q:

T in
Q(ρ)(1Q(ρ)fσ)(x) ≥ 2k,

which by self duality of T in leads to

2kw(Ek(Q)) ≤
∫

Ek(Q)
T in
Q(ρ)(1Q(ρ)fσ)w =

∫

Q(ρ)

f ·T in
Q(ρ)(1Ek(Q)w)σ = αk(Q)+βk(Q),
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where

αk(Q) =

∫

Q(ρ)\Ωk+5

f · T in
Q(ρ)(1Ek(Q)w)σ, βk(Q) =

∫

Q(ρ)∩Ωk+5

f · T in
Q(ρ)(1Ek(Q)w)σ

We split the integral into two parts according to the difficulty of the estimates that
will be needed. It is βk where hard work needs to be done.
Then we estimate:

∫
|T (fσ)|qw ≤

∞∑

k=−∞
2(k+5)qw(Ωk+4 \ Ωk+5) = 2mq

∞∑

k=−∞

∑

Q∈Qk

2kqw(Ek(Q).

We split the last sum into three Si, i = 1, 2, 3 according to the properties of cube
Q ∈ Qk, namely depending on 0 < η < 1 we have cubes of three types:

Q1
k := {Q ∈ Qk : w(Ex(Q)) ≤ ηw(Q)},

Q2
k := {Q ∈ Qk : w(Ex(Q)) > ηw(Q), αk(Q) > βk(Q)},

Q3
k := Q \ (Q1

k ∪Q2
k).

Because of the definition of Q1
k ”most” of the cubes are of this type. The sum over

the cubes of this type is handled almost identically as in the weak case giving S1 .

η||T (fσ)||qLq(w). The estimate for the second sum S2 is also fairly straightforward

since αk(Q) is easy to control. We get S2 . η−qLq||f ||qLp(σ). The vast majority

of work is done to estimate S3. The estimate that is finally obtained is S3 .

η−q[Lq + L
q
∗]||f ||qLp(σ). It requires introduction of so called ”principal cubes” and

some careful analysis of the number of Qk that a given cube can be a member
of (notice that there is no a priori bound for that number). Once the mentioned
estimates are obtained we get:

∫
|T (fσ)|qw . η||T (fσ)||qLq(w) + η−q[Lq + Lq∗] · ||f ||qLp(σ).

That proves the theorem since for η small enough the first term on the right-hand
side can be absorbed into the left-hand side.
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14 Two weight inequalities for individual Haar

multipliers and other well localized oper-

ators

after F. Nazarov, S.Treil, A.Volberg [1]
A summary written by Armen Vagharshakyan

Abstract

The article provides Sawyer type testing conditions for two-weight
estimates for ’well localized’ operators e.g. Haar multipliers.

14.1 Introduction

The authors provide Sawyer type conditions for two weight estimates for individual
Haar multipliers as well as more general operators - the so called well localized
operators.
One motivation to study two weight estimates for Haar multipliers is that they
were found useful to restore certain singular integral operators: like the Hilbert
transform ([2]), Beurling transform ([3]), and one dimensional convolution type
Calderon-Zygmund operators with twice differentiable kernels ([4]).

14.2 Statement of Results

In order to phrase the main theorems of the article, we need to introduce some
notations.
Let D denote the family of dyadic grids in Rd. For every R ∈ D denote by XR the
characteristic function of R. Given a measure µ denote by hµR a µ-weighted Haar
function associated to R, that is: a function supported on Q which is constant on
first-order dyadic subcubes of Q and satisfies the following condition

∫
hµQdµ = 0.

If µ is the Lebesque measure, then we just write hQ instead of hµQ.
The sidelength of a dyadic cube Q will be denoted by l(Q).
We introduce the notion of distance between dyadic cubes in the following way:
let R,Q ∈ D and R ⊂ Q, then d(R,Q) = log2(l(Q)/l(R)). In the general case, for
a pair of dyadic cubes R,Q ∈ D, let S ∈ D be the smallest dyadic rectangle that
contains both R and Q. Then d(R,Q) = d(R,S) + d(S,Q).
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Definition. Let T be a linear bounded operator from L2(R
d) to L2(R

d). We will
call T a band operator, if the following condition holds:

〈T (hQ) , hR〉 = 0 for d(Q,R) > r.

Example. Haar shift operators are band operators.
Now we are ready to phrase the main theorem:

Theorem 1 (band operator). Let T be a band operator and T ⋆ be its conjugate.
Let u, v ≥ 0 and u, v ∈ Lloc1 .
Then
G(f) ⊜ v1/2T (u1/2f) ∈ C(L2, L2)
iff∫
Rn |T (XQu)|2 v ≤ C

∫
Q u and∫

Rn |T ⋆ (XQv)|2 u ≤ C
∫
Q v.

Note. Formally, the expressions T (XQu), T
⋆ (XQv) that appear in the condi-

tions of the theorem are defined only for u ∈ Lloc2 . But one can make the statement
of the theorem rigorous, if the conditions of the theorem are bound to hold uni-
formly for a sequence of functions un, vn ∈ Lloc2 , which tend to the functions u and
v.
Actually, we will consider a more general type of operators - well localized opera-
tors, and then the theorem for band operators will imply from that of well localized
operators.
Definition. The operator T is called well localized for a pair of weights µ,ν if the
following conditions hold:

〈T (XQ) , hνR〉ν = 0

and
< T ⋆ (XQ) , hµR >µ= 0

for
1. l(R) ≤ l(Q) and R 6⊂ Qr, or
2. l(R) ≤ 2−rl(Q) and R 6⊂ Q.
Note. Here T ⋆ denotes the adjoint of T and Rr is the r’th dyadic parent of R.
Note. In order to define a well localized operator, we don’t need the operator T
to be bounded from L2(µ) to L2(ν), rather we only need T to be a linear operator
defined on finite linear combinations of characteristic functions of dyadic cubes
which maps those linear combinations into L2(ν).
Remark. One can prove that if T is a band operator (with respect to functions u
and v) then f → T (uf) is well a localized operator with respect to the measures
dµ = u,dν = v.
Now we phrase the theorem for well localized operators:
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Theorem 2 (well localized). Suppose T is a well localized operator, then T ∈
C (L2(µ), L2(ν)) iff
||T (XQ)||L2(ν) ≤ C

√
µ(Q) and

||T ⋆(XQ)||L2(µ) ≤ C
√
ν(Q).

14.3 Some Details of the Proof

In order to prove the theorem about well localized operators, we introduce the
following paraproduct:

Π(f) =
∑

R

∆ν
R (TXRr )EµRr (f).

Note. Here Rr is the r’th dyadic parent of R, EµRr(f) is the µ-weighted average of
f over Rr and by ∆ν

R(g) we denote the function supported on R, which is constant
on every first-order dyadic subcube P ⊂ R, this constant being equal to:

∆ν
R(g)(x) = EνR(g) − EνP (g), for x ∈ P.

One can use the fact that the operator T is well localized to derive the following
property, which would relate the operator T to the paraproduct Π(f):

〈
Π
(
hµQ0

)
, hνR0

〉
ν

=

=





0 ,otherwise〈
T (hµQ0

), hνR0

〉
ν

,if Rr0 $ Q0

So, speaking very roughly the paraproduct Π(f) captures the coefficients in the
expansion of T (f) which lie well below the diagonal. One can also introduce an
’adjoint’ paraproduct Π⋆(f), which would capture the coefficients in the expansion
of T (f) which lie well above the diagonal. And then the main step in proving
the theorem for well localized operators will be checking the boundedness of the
paraproducts Π(f) and Π⋆(f).
This boundedness will follow from the Carleson embedding theorem. Namely, in
order to prove the boundedness of the paraproduct Π(f) from L2(µ) to L2(ν), we
would rewrite:

Π(f) =
∑

Q



∑

Rr=Q

∆ν
R (TXQ)


EµQ(f),

Now we take
aQ =

∑

Rr=Q

||∆ν
R (TXQ)||2L2(ν)

and check that these numbers satisfy the Carleson embedding theorem:
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Theorem 3 (Carleson, see e.g. [5]). For numbers aQ ≥ 0 indexed by dyadic cubes
we have:

If
∑

Q⊂ eQ
aQ ≤ µ(Q̃) then

∑
Q aQ

∣∣∣EµQf
∣∣∣
2
≤ C||f ||2L2(µ).

Remark. Checking the conditions of the Carleson embedding theorem for our
choice of coefficients aQ will use the fact that the operator T is well localized.
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15 Multiparameter operators and sharp weighted

inequalities

after R. Fefferman and J. Pipher [5]
A summary written by Daniel Wang

Abstract

We give a summary of [5] by R. Fefferman and Pipher. In this
paper, weighted inequalities are obtained for maximal and singular
integral operators over Zygmund rectangles. These ideas are then
used to prove sharp weighted estimates.

15.1 Weighted inequalities of classical operators

The two main operators considered here are the maximal operator Mz and singular
integral operators of convolution type, both adapted to the geometry generated by
the Zygmund rectangles. Weighted inequalities for the (Zygmund) maximal oper-
ator and singular integral operators are proved in theorems 1 and 2, respectively.

15.1.1 Main definitions and results

Let ρs,t(x, y, z) = (sx, ty, stz) for s, t > 0, and Q the unit cube in R3. The
Zygmund rectangles, Rz, are translates of the family {ρs,t(Q)}s,t. Associated with
these rectangles is the Zygmund maximal operator Mz, given by

Mz(f)(x, y, z) = sup
(x,y,z)∈R,R∈Rz

1

m(R)

∫

R
|f |dm,

The weights associated with Rz are defined as follows: For p ∈ (1,∞), with 1
p+

1
p′ =

1, a non-negative function ω belongs to Ap(z) provided

‖ω‖Ap(z) = sup
R∈Rz

(
1

m(R)

∫

R
ωdm

)(
1

m(R)

∫

R

1

ωp′/p
dx

)p/p′
<∞,

Theorem 1. [4] The maximal operator Mz is bounded on Lp(ω) for p ∈ (1,∞) if
and only if ω ∈ Ap(z).

The next result pertains to singular integrals. For N ∈ N sufficiently large,
let {ψk,j}k,j∈Z ⊂ C∞(R3) satisfy the following size and smoothness assumption:
There exists C, independent of j, k, such that

‖ψk,j‖SN
= sup

(x,y,z)∈R3

(1 + |(x, y, z)|N )

N∑

α,β,γ=0

|∂αx ∂βy ∂γzψ(x, y, z)| ≤ C, (1)
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and the cancelation condition: For all α, β ≤ N ,
∫

R2

yαzβψk,j(x, y, z)dydz = 0 for all fixed x ∈ R1

∫

R2

xαyβψk,j(x, y, z)dxdy = 0 for all fixed z ∈ R1 (2)

∫

R2

xαzβψk,j(x, y, z)dxdz = 0 for all fixed y ∈ R1.

Theorem 2. Suppose Tf = f ∗K is a singular integral, where

K(x, y, z) =
∑

k,j∈Z

2−2(k+j)ψk,j

( x
2k
,
y

2j
,
z

2k+j

)
(3)

and {ψk,j}k,j satisfy the size/smoothness condition (1) and cancelation condition
(2). Then T is bounded on Lp(ω) if ω ∈ Ap(z), p ∈ (1,∞).

15.1.2 Outline of theorem 1

Since this was first proved in [4], we will not give too many details. But the key
component in proving the sufficiency of ω ∈ Ap(z) is the covering lemma in [3]
regarding rectangles with sides parallel to the axes. Using this covering lemma,

the operator corresponding to ω, Mω
z
(f)(x, y, z) = sup

(x,y,z)∈R,R∈Rz

1

ω(R)

∫

R
|f |ωdx

is shown to be bounded on L1 → L1,∞. Interpolation and an argument analogous
to the classical case (of Muckenhoupt weights) give theorem 1.

15.1.3 Outline of theorem 2

Step 1: We first define the multiplier classes Mx
z

and My
z . Starting with Mx

z
, we

define a ‘unit annulus’ adapted to this setting:

Ax = {(ξ, η, ζ) ∈ R3 :
1

2
< |ξ| ≤ 1 and

1

2
< |(η, ζ)| ≤ 1},

whose dyadic dilates {ρ2k,2j (Ax)}k,j∈Z partition R3. Associated to Ax is a ‘set of
singularities’ Sx, given by Sx = {(ξ, η, ζ) : ξ = 0 or (η, ζ) = (0, 0)}. Then Mx

z is

the collection of all m ∈ CN(R\Sx) such that for all α, β, γ ≤ N and s, t > 0, and
all (ξ, η, ζ) ∈ Ax, we have the following Mihlin condition:

|∂αξ ∂βη ∂γζ (m ◦ ρs,t)(ξ, η, ζ)| ≤ C.

The class My
z is defined analogously.
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Step 2: For each k, j ∈ Z, we decompose ψj,k = ψ
(1)
j,k + ψ

(2)
j,k , where the ψ

(i)
j,k

(for i = 1, 2) has stronger cancelation properties than ψj,k. This allows us to
decompose (3) into K = K1 +K2, with

K1(x, y, z) =
∑

k,j∈Z

2−2(k+j)ψ
(1)
k,j

( x
2k
,
y

2j
,
z

2k+j

)
,

and K2 defined similarly. Then we have K̂1 ∈ Mx
z and K̂2 ∈ My

z .

Step 3: The key part of the proof is this: the multiplier operator T , corre-
sponding to m ∈ Mx

z
is bounded on L2(ω) for ω ∈ A2(z). This is done by the use

of square functions, adapted to our Zygmund setting, which we now define.
Let ψ1 ∈ C∞

c (R) be even and ψ2 ∈ C∞
c (R2) be radial, with

∫
R ψ1 = 0,

∫
R2 ψ2 =

0. For s, t > 0, set

ψs,t(x, y, z) = (st)−2ψ1

(x
s

)
ψ2

(y
t
,
z

st

)
. (4)

Then we define the (Zygmund) square function by

S2
z
(f)(x, y, z) =

∫ ∫

Γz(x,y,z)
|f ∗ ψs,t(u, v,w)|2 dudvdwdsdt

s3t3
, (5)

where Γz(x, y, z) is the Zygmund rectangle centered at (x, y, z) with respective side
lengths s, t, st. Analogous to the classical square functions, we have the following
results: Fix ω ∈ A2(z). Then for all f ∈ L2(ω),

‖f‖L2(ω) ∼ ‖Sz(f)‖L2(ω),

‖Sz(Tf)‖L2(ω) ≤ C‖Sz(f)‖L2(ω).

We then have the following chain of inequalities:

‖Tf‖L2(ω) ≤ c1‖Sz(Tf)‖L2(ω) ≤ c2‖Sz(f)‖L2(ω) ≤ c3‖f‖L2(ω).

Having proved this for p = 2, the extrapolation theorem extends it to 1 < p <∞.

15.2 Sharp weighted inequalities

The second half of the paper deals with sharp bounds of weighted inequalities of
various operators. A survey of known sharp inequalities (in 1997) is given, but we
will mention one particular case. All weights in the following (subsub)section are
Muckenhoupt weights.
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15.2.1 A well-known example

Let H be the Hilbert transform. Then we have the following sharp inequality:

‖Hf‖Lp(dx) ≤ Cp‖f‖Lp(dx) (6)

where Cp = O(p) as p→ ∞. It turns out that (6), which is a sharp inequality with
the Lebesgue measure, is deduced from the following weighted sharp inequality:

‖Hf‖L2(ω) ≤ C‖ω‖A1‖f‖L2(ω), (7)

using the well-known extrapolation argument of Rubio de Francia of exploiting
duality of Lp when p > 1, which we now illustrate. By duality, there exists
ϕ ∈ L(p/2)′(R), ϕ ≥ 0, ‖ϕ‖L(p/2)′ (R) = 1 such that ‖Hf‖2

Lp ≤ ‖Hf‖L2(ϕ). Using ϕ,

we define an A1 weight ϕ̃ by

ϕ̃ =

∞∑

j=0

M jϕ

(2‖M‖L(p/2)′ )j
, (8)

where M is the Hardy-Littlewood maximal operator and M jϕ = M ◦M ◦· · ·◦Mϕ,
j times. Then ‖ϕ̃‖A1 ≤ 2‖M‖L(p/2)′ = O(p) as p→ ∞. With this, we then have

∫
(Hf)2ϕdx ≤

∫
(Hf)2ϕ̃dx ≤ C‖ϕ̃‖2

A1

∫
f2ϕ̃dx ≤ C ′p2‖f‖2

Lp ,

where (7) is used in the second inequality above. This gives (6).

15.2.2 Two applications of sharp estimates

We have two main results regarding sharp weighted inequalities.

Theorem 3. (Lebesgue estimate) Let m ∈ Mx
z

or My
z , with T the corresponding

multiplier operator. Then ‖T‖Lp(R3) = O(p5/2) as p→ ∞.

The following result is an extension of a result in [1] to the product set-
ting. Appearing first appeared in [6], and a simpler proof is given in this pa-
per. We first define the product space square function, Spr, as follows: Let
ψ1, ψ2 be nontrivial functions in C∞

c (R1), with
∫

R ψidx = 0, and for s, t > 0
set ψs,t(x, y) = (st)−1ψ1(x/s)ψ2(y/t), and define

S2
pr(f)(x, y)

∫ ∫

Γ(x)×Γ(y)
|f ∗ ψs,t(u, v)|2dudv

dsdt

s2t2
.

Theorem 4. (Product Setting) Let T 2 be the unit cube in R2. If Spr(f) ∈ L∞,
then for some small c > 0, ec|f |/‖Sf‖∞ ∈ L1.
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15.2.3 Outline of theorem 3

Without loss of generality, we assume m ∈ Mx
z . Theorem 3 follows from the

following chain of inequalities:

‖T (f)‖Lp ≤ Cp
3
2 ‖Sz(Tf)‖Lp ≤ Cp

3
2‖g∗λ,z(f)‖Lp ≤ Cp

5
2 ‖f‖Lp , (9)

where Sz is defined in (5). To define g∗λ,z, we first set

(Φλ)s,t(x, y, z) = (st)−2

(
1

1 + |x/s|

)λ( 1

1 + |(yt , zst)|2
)λ

,

for λ > 1, s, t > 0. Using ψs,t from (4), we define

g∗λ,z(f)2(x, y, z) =

∫

R3

∫

s,t>0
|f ∗ ψs,t(u, v,w)|2(Φλ)s,t(u− x, v − y,w − z)dudvdw

dsdt

st
.

The second inequality in (9) follows from classical arguments, so we focus on the
first and third inequalities.

First inequality: ‖f‖Lp(R3) ≤ Cp3/2‖Sz(f)‖Lp(R3)

This inequality follows in two stages, by first dealing with the x ∈ R variable then
dealing with (y, z) ∈ R2 variables. In each case, we use duality method in (8) to
obtain two ϕ ∈ L(p/2)′ , ‖ϕ‖L(p/2)′ = 1, one on R and the other on R2. This allows
us to relate the quantity in question to a known classical weighted norm estimate.

Third inequality: ‖g∗λ,z(f)‖Lp(R3) ≤ Cλp‖f‖Lp(R3)

First, using a similar argument as theorem 1.1 in [1], we have

∫
g∗λ,z(f)2ϕ ≤ Cλ

∫
f2Mzϕ,

for a positive function ϕ. Again, by the duality argument in (8), for p > 2, we
have

‖g∗λ,z(f)‖Lp(R3) ≤ Cλ‖Mz‖1/2

L(p/2)′ (R3)
‖f‖Lp(R3).

Then using a covering lemma in [2], one obtains the estimate ‖Mz‖L(p/2)′(R2) =
O(p2).

15.2.4 Outline of Theorem 4

The theorem follows immediately from the following estimate:

‖f‖Lp(T 2) ≤ Cp‖Spr(f)‖Lp(T 2), as p→ ∞, (10)
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which follows from showing

‖f‖Lp ≤ Cp1/2‖Sf‖Lp , (11)

where f = (fk)k∈N takes its values in the Hilbert space L2(Γ; dγ), S is the classical
square function on R, and |Sf(x)|2 =

∑
k∈N(Sfk)

2. Lastly, (11) follows from the
inequality ∫

R

|f |2ωdx ≤ C‖ω‖A1(R)

∫

R

Sf2ωdx.

(Here, |f | is the Hilbert space norm) The important part of this proof is showing
(11) implies (10). This is very similar in dealing with the first inequality in the
outline of Theorem 3.
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