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1 Breaking the duality in the return times

theorem (part II)

after Demeter, Lacey, Tao, and Thiele, [3]

A summary written by Michael Bateman

Abstract

We outline a method for controlling a model for the return times
operator. For more information about how this model operator relates
to the return times theorem, see the summary by Patrick LaVictoire
in these conference proceedings.

1.1 Notation and prior results

For a sequence (xj)j ⊆ C, define

||xj ||Ṽ r
k

= sup
M,k0,...,kM

(
M∑

m=1

|xkm − xkm−1 |r
) 1

r

(1)

||xj ||V r
k

= sup |xj | + ||xj||Ṽ r
k
. (2)

These are called variational norms. We will use the fact that they satisfy the
triangle inequality.

For a sequence of multipliers, fk, and 1 ≤ q ≤ ∞, define

||(fk)k∈Z||M∗
q

= sup
||g||q=1

∣∣∣∣
∣∣∣∣sup
k

∫
fk(ξ)ĝ(ξ)e

2πizξdξ

∣∣∣∣
∣∣∣∣
Lq

z

. (3)

These are called maximal multiplier norms. We will use the fact that they
satisfy the triangle inequality.

Given a set of points Λ = {λ1, ..., λN} ⊆ R, let Rk be the set of dyadic
intervals of length 2k such that Rk ∩ Λ 6= ∅. For each ω ∈ Rk, let mω be
such that supp(mω) ⊆ ω and such that for n ∈ {0, 1} we have ||∂nmω||∞ ≤
C|w|−n. We say that such an mω is C-adapted to ω. Let ωk(λ) be the unique
interval ω in Rk containing λ. Define

MΛ,k(ξ) =
∑

ω∈Rk

mw(ξ), (4)
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and
||mω||V r,∗ = sup

λ∈Λ
||
(
mωk(λ)(λ)

)
k
||V r

k
(5)

Theorem 1 (Demeter, [2] ). For 1 < q < 2, ǫ > 0, and r > 2, we have

||(Mk)k∈Z||M∗
q

. |Λ| 1q − 1
r
+ǫ(C + . (6)

This theorem is an extension of a similar result in [3], which is itself an
extension of a result of Bourgain. We will use it below in Subsection 1.3.
Here are some other results that we need:

Proposition 2. If S is a collection of tiles, then

size(S, f) . sup
s∈S

inf
x∈Is

Mf(x) (7)

We have used the notation

size(S, f) = sup
s∈S

sup
ms

1

|Is|
1
2

∣∣∣∣∣

∣∣∣∣∣

(
1 +

|x− c(Is)|
|Is|

)−10 ∫
f̂(ξ)m(ξ)e2πixξdξ

∣∣∣∣∣

∣∣∣∣∣
L2

x

(8)
Later, we will consider a set E = {x : Mf(x) > α}, and this lemma allows
us to conclude that if Is 6⊆ E for all s ∈ S, then size(S, f) . α. The next
proposition will help us sort a collection of tiles into subcollections each of
which has uniform size.

Proposition 3. Let S be a convex collection of tiles, and δ = − log2(size(S, f)),
Then we may partition S =

⋃
n≥δ Pn, so that size(Pn, f) ≤ 2−n, and so that

each Pn may be partitioned as Pn =
⋃

T∈Fn
T, where each T is a tree and∑

T∈Fn
|IT| . 22n||f ||22. We have used IT to denote the space interval of the

top of T.

For what follows, we assume φs and ϕs denote Schwartz functions asso-
ciated to a tile s such that

ϕs : R → R (9)

φs : R2 → R and suppθφs(x, θ) ⊆ ωs, (10)

These functions will also satisfy some standard technical decay conditions.
Also assume that for each l ∈ N, for any tree T = (IT, ξT), and for each

s ∈ T, we have a decomposition φs,T = φ
(l)
s,T+φ̃

(l)
s,T such that suppxφ̃

(l)
s (x, θ) ⊆

2l−1Is. Further assume that ϕs and φ
(l)
s are such that the following proposi-

tion holds:
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Proposition 4. For 1 < t <∞, and for any tree T,
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣


 ∑

s∈T,|Is|=2k

< f, ϕs > φ
(l)
s,T(x, θ)



k

∣∣∣∣∣∣

∣∣∣∣∣∣
V r

k

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
Lt

x

. ||f ||22size(T, f)|IT|
1
t . (11)

The properties of the functions φs and ϕs that arise from modeling the
return times operator have the properties assumed above. The need for
splitting φs into two parts is so that one can use the proposition above. This
should not be clear from what has been said here, but for reasons of space,
we explain no further.

1.2 Main result

For a set of tiles S, define

VSf(x) =

∣∣∣∣∣∣

∣∣∣∣∣∣


 ∑

s∈S,|Is|=2k

< f, ϕs > φs(s, θ)



k

∣∣∣∣∣∣

∣∣∣∣∣∣
M∗

q,θ

(12)

Later we will use the fact that if S is partitioned into S1 and S2, then
VSf(x) ≤ VS1f(x) + VS2f(x). We can now state the main theorem. This
is proved in [3] for p = 2 and in [1] for the full range stated here.

Theorem 5. If ϕs, φs have the properties above, if S is a convex collection
of tiles, if 0 < λ ≤ 1,if δ > 0, if F ⊆ R, if 1 < p < 2 and 1

p
+ 1

q
< 3

2
, then

|{x : VS1F (x) > λ}| .
|F |
λp+δ

. (13)

To prove this theorem, we define several exceptional sets, show that they
are small, and show that VS1F (x) is small outside these sets. We sketch this
in slightly more detail below, ignoring numerological issues. Fix λ. Define
E = {x : M1f (x) > λ}. Assume that for all s ∈ S, Is ∩ Ec 6= ∅. (Of course
this will not always be true, but a similar argument handles that case as
well. Then one can use the sublinearity of VS in the set of tiles S, as noted
above.) By Proposition 2, we know that size(S, 1F ) . λ. By Proposition 3,
if δ = − log size(S, 1F ), we may write S =

⋃
n≥δ Pn where

∑

T∈Fn

|IT| . 22n||f ||22. (14)

9



Now for each n, we define

E(1)
n =

⋃

l≥0

{x :
∑

T∈Fn

12lIT (x) > βn2
2l} (15)

E(2)
n =

⋃

l,m≥0

⋃

T

{x : ||
∑

s∈T,|Is|=2k

< f, ϕs > φ
α(l,m)
s,T (x, ξT)||V r

k
> γn2

−10l 1

(|m| + 1)2
},

(16)

for some appropriate βn and γn, and where the second union in the defini-
tion of E

(2)
n is over an appropriate collection of trees. We use the notation

α(l,m) = 0 if m ∈ {−1, 0, 1} and α(l,m) = l + log2m otherwise. Notice

that we can control |E(1)
n | just by using Chebyshev’s inequality and the es-

timate in 14. Further, we can control |E(2)
n | by using Proposition 4. These

estimates are important, since they now allow us to focus on VS1F (x) for

x 6∈ ⋃n(E
(1)
n ∪ E(2)

n ). This is the topic of the next section.

1.3 Pointwise estimates outside exceptional sets

For the following theorem, we need to introduce some notation. Let S =⋃
T∈F T be a collection of tiles partitioned into families of trees. For T ∈ F ,

let G(T) = {s ∈ S : ωs ⊇ ωT}. Now fix l ∈ N. For a tree T, define

Tl,0 = {s ∈ G(T) : Is ∩ 2lIT} (17)

Tl,m = {s ∈ G(T) : Is ∩ (2lIT +m2lIT but s 6∈
⋃

|j|<m
Tl,m}. (18)

Also define Fl,m = {Tl,m : T ∈ F}.

Theorem 6. Use assumptions and notation from above. Assume for each
tile s we have a number as and that as

|Is|
1
2
≤ σ. Define

E(1) =
⋃

l≥0

{x :
∑

T∈F
12lIT (x) ≥ β22l} (19)

E(2) =
⋃

l,m≥0

⋃

T∈Fl,m

{x :

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

s∈T,|Is|=2k

asφ
α(l,m)
s,T (x, ξT)

∣∣∣∣∣∣

∣∣∣∣∣∣
V r

k

> γ2−10l 1

(|m| + 1)2
}.

(20)
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Then for ǫ > 0, if x 6∈ E(1) ∪ E(2), then

∣∣∣∣∣∣

∣∣∣∣∣∣


 ∑

s∈S,|Is|=2k

asφs(x, θ)



k

∣∣∣∣∣∣

∣∣∣∣∣∣
M∗

q,θ

. β
1
q
− 1

r
+ǫ(γ + σ). (21)

Recall that proving this estimate for x outside E(1) and E(1) is exactly
what we need to finish proving Theorem 5. So fix an x 6∈ E(1) ∪ E(2). We
will partition the tiles S =

⋃
l Pl,x, where Pl,x is defined below:

F0,x = {T : x ∈ IT} (22)

Fl,x = {T : x ∈ 2lIT \ 2l−1IT} (23)

Pl,x =


 ⋃

T∈Fl,x

G(T


 \

⋃

0≤j<l
Pl,x. (24)

Let mω,l(θ) =
∑

s∈Pl,x,ωs=ω
asφs(x, θ). Note that it is supported in ω and is

adapted with constant 2−10lσ, by assumption on as and by decay properties
of φs. Let

Mk,lf(x) =
∑

ω : |ω|=2−k

mω,l(θ) (25)

Mkf(x) =
∑

l

Mk,lf(x). (26)

Note ||Mkf(x)||M∗
q,θ

≤∑l ||Mk,lf(x)||M∗
q,θ

, so we will focus on ||Mk,lf(x)||M∗
q,θ

for a fixed l. Note that if s ∈ Pl,x, then there is a tree T ∈ Fl,x such that
ωs ∋ c(ωT ). So let Λx,l = {c(ωT ) : T ∈ Fl,x}. Then

|Λx,l| ≤
∑

T∈Fl,x

12lIT (x) ≤ β22l (27)

by our assumption on x. For a given tree T, denote

WT =

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

s∈Pl,x∩G(T)

asφs(x, θ)

∣∣∣∣∣∣

∣∣∣∣∣∣
V r

k

. (28)
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We now apply the maximal multiplier theorem (Theorem 1) with the set Λx,l

and the functions (Mk,l)k to see that

||Mk,lf(x)||M∗
q,θ

≤ β
1
q
− 1

r
+ǫ22l(2−10lσ + sup

T∈Fl,x

WT). (29)

Finally, we control the numbers WT:

WT ≤
∞∑

m=0

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

s∈Pl,x∩Tl,m

asφs(x, θ)

∣∣∣∣∣∣

∣∣∣∣∣∣
V r

k

=
∞∑

m=0

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

s∈Pl,x∩Tl,m

asφ
α(l,m)
s,T (x, θ)

∣∣∣∣∣∣

∣∣∣∣∣∣
V r

k

≤
∞∑

m=0

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

s∈Tl,m

asφ
α(l,m)
s,T (x, θ)

∣∣∣∣∣∣

∣∣∣∣∣∣
V r

k

. (30)

This final quantity is well-controlled because x 6∈ E(2). We are able to replace
φs(x, θ) with φ

α(l,m)
s,T (x, θ) because of the support of φs − φ

α(l,m)
s,T . The last

inequality holds because if

{s ∈ Pl,x ∩Tl,m : |Is| = 2k} 6= {s ∈ Tl,m : |Is| = 2k}, (31)

then in fact the left side is empty. This is helpful because it allows us to
eliminate the dependence on x of the set of tiles in the final sum of 30. This
is the reason for organizing the tiles into the collections Pl,x as we did.
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2 On the multilinear restriction and Kakeya

conjectures

after J. Bennett, A. Carbery, and T. Tao [1]
A summary written by Matthew Bond

Abstract

Here we will summarize the main ideas of Bennett, Carbery, and
Tao’s paper, On the multilinear restriction and Kakeya con-

jectures [1].

2.1 Introduction - The linear and multilinear Kakeya
conjectures

An unsolved problem, the (linear) Kakeya conjecture, states that any com-
pact set in Rd(1) containing line segments in every direction must have full
Hausdorff dimension. Suppose we have a proposed counterexample E, and
choose from it a collection of line segments in δ-separated directions. To
each such line segment corresponds a δ tube (i.e., a δ-neighborhood of that
line segment). Then one can investigate the Lp norm of the sum of the cor-
responding characteristic functions. If it were possible to cleverly construct
the set E so that the tubes overlap so much that the Lp norm is large, then
one might expect the Kakeya conjecture to be false. On the other hand, if
for some ranges of p the Lp norm always behaves on the same order as if
the tubes all went through the origin, then it seems that a uniformly high
overlap is impossible, and so the Kakeya conjecture is probably true. Indeed,
the Kakeya conjecture has an equivalent formulation in this spirit:

The linear Kakeya conjecture: Let δ << 1. Let T be a collection
of δ-tubes T, pointing in directions δ-separated on Sd−1. Then for each
p > d

d−1
,(2) we have

||
∑

T∈T

χT||pp ≤ Cpδ
d−1 · (#T)p−

1
d−1 .

The object of study in [1] is a related multilinear Kakeya conjecture.
It is similar in spirit, but substantially different in that the linear Kakeya

1Here, and in the entire paper, we will be working in Rd with d ≥ 2.
2One can show that p < d

d−1
is impossible just by letting the tubes be disjoint.
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conjecture is not a special case, for example. In the multilinear case, we
choose families Tj of tubes, j = 1, ..., d, with each tube Tj,l ∈ Tj pointing in
directions a small distance (≤ ε0, a small enough absolute constant maybe
depending on d) away from the j-th standard basis element ej . Unlike the
linear case, we allow tubes to be repeated. As before, we sum the charac-
teristic functions in each family, but now we also take the product over the
families, and what one gets is

The multilinear Kakeya conjecture: In the setting of the previous
paragraph, one has

||
d∏

j=1

#Tj∑

l=1

χTj,l
||pp ≤ Cpδ

d(

d∏

j=1

#Tj)
p

whenever p ≥ 1
d−1

.
Again, the upper bound is true if, up to a constant, the largest Lp norm

is attained by letting all tubes pass through the origin, so that it is not
possible to have lots of overlap on a large set. [1] proves the conjecture when
p > 1

d−1
. One may also replace the ej by another basis, changing only Cp and

ε0, by linear algebra considerations. In contrast to the linear case, taking the
product allows us to simplify by assuming the tubes to have infinite length.
We will make this assumption from now on.

2.2 The joints problem

The boundary exponent of the multilinear Kakeya conjecture easily be shown
to be necessary by letting the function take the value 1 on a large set. In this

case, one can allow the tubes to align along the integer grid [1, (N
d
)

1
d−1 ]d. This

integer grid is the set of joints of the family
⋃
j≤dTj, i.e., the set of points x

for which d distinct tubes have their axes pass through x in linearly indepen-
dent directions. Conversely, for larger p, the multilinear Kakeya conjecture
puts a bound on the number of joints, subject to transversality conditions.
A weak form of this can be stated and easily proved by comparing the mul-
tilinear Kakeya estimate with the lower bound #joints · δd, since from above
we have #Tj ≤ N , the total number of tubes. For simplicity, we limit our
attention to the case d = 3 (so p = 1

2
+ ε), where we can state it as:

Watered-down joints theorem: Let the lines ℓj,l be the axes of tubes
as in the multilinear Kakeya conjecture, and let

∑
j #Tj = N . Then the

14



number of joints obtained by taking a single tube Tj,l from each Tj is no
more than CεN

3/2+ε.
In order to bootstrap this result into something more interesting, we

need to define transversality. We say that a basis v1, ..., vd has transversality
θ = |det(v1...vd)|, and let this also be the definition of the transversality of
the joint formed by d lines in the directions vj .

Joints theorem: Let T be an arbitrary set of δ tubes, let θ0 > 0, and let
N = #T. Let J(θ0) be the set of (distinct) joints with transversality θ ≥ θ0.
Then for all ε > 0,

J(θ0) ≤ CεN
3/2+εθ

−1/2−ε
0 .

The presence of ε corresponds to the fact that the p = 1
d−1

case of the
multilinear Kakeya conjecture was unknown at the time of [1].

2.3 The Loomis-Whitney inequality

If we limit ourselves to the case ε0 = 0, the multilinear Kakeya conjecture is
already known to be true, and it can be seen to imply the Loomis-Whitney
inequality [2] (up to a constant). Let πj : Rd → Rd−1 act by deleting the
j-th coordinate. Then if fj ∈ Ld−1(Rd−1) and we define f̃j = fj ◦ πj , the
Loomis-Whitney inequality states:

||
d∏

j=1

f̃j ||L1(Rd) ≤
d∏

j=1

||fj||Ld−1(Rd−1).

Indeed, one can let f̃j = (
∑

Tj,l∈Tj
χTj,l

)p (on the support of the integrand)

in the multilinear Kakeya conjecture inequality at the endpoint p = 1
d−1

.
Letting δ be small, one can use approximations by characteristic functions
to get the Loomis-Whitney inequality up to a constant for arbitrary fj ∈
LP (Rd−1).

Since ε0 = 0 is not, in general, required, the multilinear Kakeya conjecture
is also called a perturbed Loomis-Whitney inequality.

2.4 Proof of the (unperturbed) Loomis-Whitney in-
equality (and more)

Most of the main ideas of [1] are on display even when we require ε0 = 0,
i.e., that the tubes Tj,l ∈ Tj be parallel. So let us consider this case now,
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and leave the reader to consult [1] for the perturbed case. The main idea
is monotonicity - one compares an arbitrary configuration of tubes in the
given directions to another in which all tubes are centered at the origin,
by moving between the two cases linearly with respect to a time variable
t. Namely, as the tubes slide away from the origin, one might hope for
the Lp norm to decrease. [1] shows that this happens, if not literally, then
certainly after one estimates the characteristic functions of tubes from above
by smoother functions which exhibit Gaussian decay as one moves in any
direction orthogonal to the tube’s axis. The main convenience of Gaussians
comes from working with a product formula and adding exponents. The
characteristic functions χTj,l

, then, can be thought of as

χTj,l
(x) = e−π<πj(x−vj,l),πj(x−vj,l)>,

where the vj,l give the location of the tube. It is also natural to think of πj
as being given by the corresponding diagonal matrix A0

j having 1’s on the
diagonal, except for at the j-th diagonal entry, which is 0, and to only write
A0
j in the first slot of the inner product.

Let us single out the properties of A0
j which make the desired inequality

possible by the proof of [1], and refer to any such set of matrices as good.
The upshot is that one can prove a much more general multilinear inequality,
with the level of multilinearity n independent of the dimension d, and the
positive real n-vector of exponents p allowed to vary its entries independently
subject to linear algebraic conditions.

First, a definition: For d × d matrices A and B, we will say that A ≥ B
if A−B is positive semi-definite, and A > B if A−B is positive definite.(3)

Let p ∈ (0,∞)n, for some integer n > 0. A p-good collection of matrices,
then, is defined to be a collection A1, ..., An of positive semi-definite real
symmetric d × d matrices such that Ak ≤∑j pjAj =: A∗ for all k = 1, ..., n

and
⋂
j ker(Aj) = {0}(4). We can see that {A0

j}dj=1 is p-good for p1 = ... =

pd = 1
d−1

, where d = n.
Finally, let us introduce the time dependence to the formula, and gen-

eralize once more by replacing finite sums by integration with respect to
finite, compactly supported Borel measures µj . Our ”sum of characteristic

3We will never have occasion to employ any other partial ordering on matrices.
4This shows that

∑
pjAj is nonsingular
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functions”, then, becomes

fj(t, x) =

∫

Rd

e−π<Aj(xj−vjt),(xj−vjt)>dµj(vj).(
5) (1)

This is a sum in the usual sense if the measure µj is a sum of delta measures.

Theorem 1. Let n > 0 be an integer, and let p ∈ (0,∞)n. Let Aj, j =
1, ..., n, be a p-good collection of matrices, and let µj be finite, compactly
supported Borel measures on Rd. Define functions fj as in 1. Then the
quantity

Qp(t) :=

∫

Rd

n∏

j=1

fj(t, x)
pjdx (2)

is nonincreasing in time t when t > 0.

Proof. One shows that Q′
p(t) < 0. To do this, we first assume that p is a

vector of integers, and then show that a certain representation formula for
Q′
p(t) must in fact be valid for all p ∈ (0,∞)n by a polynomial density lemma

(8.2 of [1]). When each pj is an integer, we may find each f pj by integrating
pj independent copies of each integrand, i.e.,

Qp(t) =

∫

Rd

∫

(Rd)p1

· · ·
∫

(Rd)pn

e−π
Pn

j=1

Ppj
k=1<Aj(x−vj,kt),(x−vj,kt)>

n∏

j=1

pj∏

k=1

dµ(vj,k)dx.

(3)
Complete the square to write

n∑

j=1

pj∑

k=1

< Aj(x− vj,kt), (x− vj,kt) >=< A∗(x− v̄t), (x− v̄t) > +δt2, (4)

where

v̄ := A−1
∗

n∑

j=1

Aj

pj∑

k=1

vj,k

is an average weighted velocity,

δ :=

n∑

j=1

pj∑

k=1

< Ajvj,k, vj,k > − < A∗v̄, v̄ >,

5The subscript l is no longer needed since vj is a function with respect to the (possibly
discrete) measure µj .
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and recalling A∗ :=
∑n

j=1 pjAj . Putting 4 into 3 and changing the x variable,

one sees that the time dependence is captured entirely by the δt2 term, i.e.,
the integrand takes the form Φ(x)e−πδt

2
, where δ depends on the variables

vj,k. One gets
Q′
p(t) =

2πt

∫

Rd

∫

(Rd)p1

· · ·
∫

(Rd)pn

δe−π
Pn

j=1

Ppj
k=1<Aj(x−vj,kt),(x−vj,kt)>

n∏

j=1

pj∏

k=1

dµ(vj,k)dx.

One can clean this up with probabilistic language by treating the vj,k as
random variables with the measures

e−π<Aj(x−vj,k),(x−vj,k)>dµj(vj,k)

fj(t, x)
.

Then using expectation with respect to the product, we can write

Q′
p(t) = −2πt

∫

Rd

E (δ)
n∏

j=1

fj(t, x)
pjdx. (5)

Some linear algebra shows that

E (δ) =

n∑

j=1

pjE (< (Aj − AjA
−1
∗ Aj)(vj − E (vj), (vj − E (vj))) >) (6)

+
n∑

j=1

pj < Aj(E (vj − E (v̄))), (E (vj − E (v̄))) > .

Additional considerations show that if we multiply E (δ) by det(A∗), the
dependence of this expression on p is polynomial for general p, and lemma
8.2 from [1] shows that formula 5 holds under the interpretation 6 for all
p ∈ (0,∞)n. Multiplying A∗ ≥ Aj on the right by A−1

∗ Aj , one gets positivity
of E (δ), and the result follows.
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3 Boundedness of the Carleson operator

after M. Lacey and C. Thiele [1]
A summary written by Alberto A. Condori

Abstract

We outline a proof of the weak type L2 estimate for the maximal
Carleson operator based on time-frequency analysis due to M. Lacey
and C. Thiele.

3.1 Introduction

For any function f ∈ L1 on R, we define the Fourier transform f̂ of f by
f̂(ξ) =

∫
R
f(x)e−2πiξxdx and denote the operator f 7→ f̂ by F .

It is well known that the Fourier transform (operator) F is isometric on
L1 ∩ L2 under the L2 norm and L1 ∩ L2 is dense in L2. Hence, F admits a
unique extension to a unitary operator on L2 and

f(x) = lim
N→∞

∫ N

−N
f̂(ξ)e2πixξdξ (1)

holds for each f ∈ L2 in the sense of L2 convergence. In particular,

f(x) =

∫

R

f̂(ξ)e2πiξxdξ for a.e. x ∈ R (2)

holds for f ∈ L2 such that f̂ ∈ L1 by (1) and the dominated convergence
theorem. Thus, it seems natural to ask whether (1) holds a.e. for any f ∈ L2.

In view of the density of the Schwartz space S (of rapidly decreasing
functions on R) in L2, it seems natural to use the result (2) for S to establish
the a.e. convergence in (1) for arbitrary f ∈ L2. This reasoning leads one to

Theorem 1. The a.e. convergence in (1) holds for arbitrary f ∈ L2 if there
is a constant C > 0 such that

‖Cf‖2
2,∞ := sup

λ>0
λ2|{x ∈ R : Cf(x) > λ}| ≤ C‖f‖2

2, for all f ∈ L2, (3)

where C denotes the double-sided Carleson operator C,

Cf(x) = sup
N>0

∣∣∣∣
∫ N

−N
f̂(ξ)e2πixξdξ

∣∣∣∣ for f ∈ L2.

In this note, we provide an outline of the time-frequency analysis tech-
nique used in [1] to prove the validity of the weak-type estimate in (3).
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3.2 Notation and preliminary reductions

Let us (formally) define translation, modulation, and dilation operators by

Trλ f(x) = f(x−λ), Modλ f(x) = f(x)e2πixλ and Dilλ f(x) = λ−1/2f(x/λ).

Clearly, F Trλ = Mod−λF , F Modλ = TrλF and F Dilλ = Dil1/λF .
We write |E| for the Lebesgue measure a set E ⊂ R. Given an interval I

(i.e. a subset of R of the form [x, y) with x < y) and α > 0, we write c(I)
for the center of I, and αI for the interval with center c(I) and length α|I|.

An interval is called dyadic if it is of the form [n2k, (n + 1)2k) for some
integers k and n. Dyadic intervals have three useful properties: Any dyadic
interval is the disjoint union of two dyadic intervals of half length; if two
dyadic intervals intersect, then one is contained in the other; and, for each
x ∈ R and k ∈ Z, there is only one dyadic interval I with |I| = 2k and x ∈ I.

Throughout, we think of the first coordinate x as the time interval and
the second coordinate ξ as the frequency coordinate. Thus, we refer to (x, ξ)
coordinate plane as the time-frequency plane.

Let T denote the collection of rectangles I ×w with I and w dyadic and
|I||w| = 1. Any s = Is × ws ∈ T is called a tile.6

Let ϕ ∈ S such that χ[−1/10,1/10] ≤ ϕ̂ ≤ χ
[−1/9,1/9]. For each tile s =

Is×ws, we define the “lower and upper halves” w1s := w ∩ (−∞, c(ws)) and
w2s := w ∩ (c(ws),∞) of ws and the function ϕs = Modc(w2s) Trc(Is) Dil|Is| ϕ.
We observe that ϕ̂s is supported in 1

2
w1s and

|ϕs(x)| ≤ Cν |Is|−1/2(1 + |x− c(Is)|/|Is|)−ν, ν ≥ 0,

holds7, because (1 + |x|)νϕ(x) is bounded for each ν ≥ 0 as ϕ ∈ S.
For technical reasons, we consider (instead of C) the one-sided Carleson

operator C∗ defined by C∗f(x) = sup
N

∣∣∣∣
∫ N

−∞
f̂(ξ)e2πixξdξ

∣∣∣∣ for f ∈ L2. Moreover,

to prove the weak-L2 bound for C∗, we consider instead the dyadic model8:

Aξf :=
∑

s∈T

χ
w2s

(ξ) 〈f, ϕs〉ϕs (4)

6Notice that our rectangles Is × ws have area 1 so that F Dil|Is| = Dil|ws| F .
7Note that the constant Cν depends only on the choice of ϕ and ν.
8Aξ is well-defined in S: In fact, the series in (4) converges absolutely for f ∈ S.
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ξ

Figure 1: Some of the tiles s that contribute to the sum for Aξ in the time-frquency

plane. The shaded areas are the tiles Is × ω2s.

(See Figure 3.2.) After all, the weak-L2 bound for C∗ follows from

‖ sup
ξ

|Aξf |‖2,∞ ≤ C‖f‖2 for all f ∈ L2. (5)

By a duality argument, it can be seen that the estimate (5) follows from
∑

s∈P
|〈f, ϕs〉 〈ϕs(χw2s

◦N), χE〉| ≤ C‖f‖2|E|1/2 (6)

for all f ∈ S, measurable functions N , measurable sets E, and finite subsets
P of T . Hence, to prove (1) holds a.e., it suffices to prove (6).

3.3 The main argument

Let us fix an f ∈ S, a measurable function N , a measurable set E, and finite
subset P of T . In view of the possible overlapping of tiles in P, it seems
natural to order tiles as follows: We say s < s′ if Is ⊂ Is′ and ws′ ⊂ ws.

A set of tiles T is called a tree if there is a tile9 sT = IT × wT , the top
of the tree T , such that s < sT for all s ∈ T . A tree T is called a j-tree if
wjsT

⊂ wjs for all s ∈ T .
In order to prove (6), we first make some definitions and establish some

needed results.

Definition 2. Let N be a measurable function on R, E a set of finite measure
and P ⊂ T . The mass of E with respect to P is defined by

mass(E;P) =
1

|E| sup
s∈P

sup
t∈T ,s<t

∫

E∩N−1[ωt]

1(
1 + |x−c(It)|

|It|

)10

dt

|It|
.

9Note that sT may not belong to T .

22



Theorem 3. Let N be a measurable function on R and E a set of finite
measure. If P is a finite set of tiles, then P can be decomposed as the union
of sets Plight and Pheavy with

mass(E;Plight) ≤ 2−2 mass(E;P)

and Pheavy is the union of trees Tj such that

∑

j

|ITj
| ≤ C1 mass(E;P)−1.

Definition 4. Given a finite subset P ⊂ T and a function f ∈ L2, we define
the energy of f with respect to P by

energy(f ;P) =
1

‖f‖2
sup

T∈P: T is a 2−tree

(
1

|IT |
∑

s∈T
| 〈f, ϕs〉 |2

)1/2

.

Theorem 5. If P is a finite set of tiles, then P can be decomposed as the
union of sets Plow and Phigh with

energy(f ;Plow) ≤ 2−1 energy(f ;P)

and Phigh is the union of trees Tj such that

∑

j

|ITj
| ≤ C2 energy(f ;P)−2.

Let us now show how Theorems 3 and 5 allow us to decompose P into
sets Pn, where n runs over a finite set of integers, so that

mass(E;Pn) ≤ 22n and energy(E;Pn) ≤ 2n (7)

and Pn is a union of trees Tn,k, k ≥ 1, with

∑

k

|ITn,k
| ≤ C2−2n.

To begin, we observe that P must satisfy the estimates in (7) for sufficiently
large n. For such n, let us set Pn = ∅. Next, if the mass of E relative to P is
greater than 22(n−1), we split P into Plight and Pheavy , replace P with Plight
and add Pheavy to Pn so that mass(E;P) ≤ 2−222n = 22(n−1) and Pn is a
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union of trees Tn,j such that
∑

j |ITn,j
| ≤ C1 mass(E;Pheavy)−1 ≤ C1/2

2(n−1).

Likewise, if the energy of E relative to P is greater than 2n−1, we split
P into Plow and Phigh, replace P with Plow and add Phigh to Pn so that
energy(f ;P) ≤ 2−12n = 2n−1 and the last collection of trees Tn,j added to
Pn satisfy

∑
j |ITn,j

| ≤ C1 energy(E;Pheavy)−2 ≤ C2/2
2(n−1). Then P satisfies

the estimates in (7) with n replaced by n−1 and we continue this procedure
in a similar fashion until there are no tiles left in P.

Finally, to obtain the desired estimate (6), we need

Theorem 6 (Main estimate). There is a constant C3 > 0 such that for any
tree T , function f ∈ L2, measurable function N on R and measurable set E,

∑

s∈T

∣∣∣〈f, ϕs〉
〈
χ
E∩N−1(ωs(2)), ϕs

〉∣∣∣ ≤ C3|IT | energy(f ;T ) mass(E;T )‖f‖2|E|.

In particular, Theorem 6 and our previous construction yield

∑

s∈P
| 〈f, ϕs〉

〈
χ
E∩N−1(ωs(2)), ϕs

〉
|

≤
∑

n

∑

j

C3|ITn,j
| energy(f ;Tn,j) mass(E;Tn,j)‖f‖2|E|

≤C3

∑

n

∑

j

|ITn,j
|2n+1 min{|E|−1, 22n+2}‖f‖2|E|

≤C4‖f‖2|E|1/2.

This completes the proof of (6) and so the weak-type estimate for C∗ and
the a.e. convergence of (1) for arbitrary f ∈ L2 hold, as desired.

We refer the reader to [1] and [2] for more material on Carleson’s Theorem.
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4 A Carleson Type Theorem For A Cantor

Group Model of the Scattering Transform

after C. Muscalu, T. Tao, and C. Thiele [1]
A summary written by Michael Dabkowski

Abstract

We prove the weak L2 bounds for a Carleson type maximal oper-
ator for the d-adic model of the scattering transform on the line.

4.1 Introduction

Scattering transforms are seen as non-linear variants of the Fourier transform.
We therefore ask if the classical a priori estimates such as Riemann-Lebesgue,
Plancherel, or Hausdorff-Young hold for a given scattering transform. We will
look to find a variant of the AKNS-ZS matrix system: G′ = WG, where

G =

(
a b
b̄ ā

)
W =

(
0 F (x) exp(2ikx)

F (x) exp(−2ikx) 0

)
,

where F is compactly supported (later we will extend to L2(R+)). Under
the compactly supported assumption we can solve the differential equation
under the initial condition G(−∞) = Id to obtain an absolutely continuous
solution that is constant near ∞. The scattering transform of the potential
F at spectral value k is G(∞). We would like to prove a Carleson-Hunt type
theorem for this transform, namely,

|| sup
x

√
log(a(x, ·))||L2 ≤ C||F ||22.

We choose to study the d-adic version of the problem. Starting with the
base d expansions of two positive numbers x and k we define a character

w(k, x) = w
(∑

n∈Z

knd
n,
∑

n∈Z

xnd
n
)

= γ
P

n∈Z knx−1−n , (1)

where γ is a primitive d-th root of unity. We will now replace the exponential
factor in the above matrix W with the character w. Doing so we arrive at
the differential system

∂xG(k, x) = W (k, x)G(k, x) (2)
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where

G(k, 0) = Id and W (k, x) =

(
0 F (x)w(k, x)

F (x)w(k, x) 0

)
. (3)

For this problem we have the following theorem

Theorem 1. For d > 1 and F ∈ L2(R+), for almost all k ∈ R+ the limit

lim
x→∞

G(k, x) = G(k,∞)

exists and satisfies the Plancherel inequality

∫ ∞

0

log |a(k,∞)| dk ≤ C

∫ ∞

0

|F (x)|2 dx. (4)

Moreover, we have the weak-type inequality with a constant C(poly(d))

∣∣∣
(
k : sup

x
log |a(k, x)| > λ

)∣∣∣ ≤ C(poly(d))λ−1||F ||22. (5)

4.2 Localization by Tiles

We localize (2) and (3) in space about a d-adic interval ω = [dkn, dk(n+1)).
Doing so we arrive at the localized system

∂xGω(k, x) = Wω(k, x)Gω(k, x) (6)

where

Gω(k, 0) = Id and Wω(k, x) =

(
0 F (x)w(k, x)χω(x)

F (x)w(k, x)χω(x) 0

)
.

(7)

Now we say that a tile is a rectangle of the form p = I×ω, where I and ω
are d-adic intervals of the form I = [dκn, dκ(n+1)) and ω = [d−κl, d−κ(l+1))
for κ ∈ Z and n, l ∈ Z+. If we suppose that (k, x) is a point in some tile p
and k0 is the leftmost point in Ip, then we can split (1) into parts

w(k, x) = γ
P

n<κ knx−1−nγ
P

n≥κ knx−1−n.
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Since we are in a tile the first factor doesn’t change as x varies in ωp and
similarly the second factor doesn’t change as k varies in Ip. It follows that
w(k, x) = γj(k)w(k0, x)χω(x) and hence the solution to (6) at the point (k, x)
is conjugate to the solution to (6) at the point (k0, x) by the diagonal matrix
with eigenvalues γj(k) and 1. This reasoning says that Gωp doesn’t change
too much in the tile p. Bearing this in mind we set Gp = Gω(k0,∞).

To understand what it means for tiles to be “nearby” we say a multitile
is be a rectangle of the form P = I × ω with

P = [dκn, dκ(n + 1)) × [d1−κl, d1−κ(l + 1)), κ ∈ Z, l, n ∈ Z+.

An important but elementary consequence of this is that given a multitile P
we can write it as a union of d horizontal tiles: P = p0 ∪ p2 ∪ · · · ∪ pd−1 or
as a union of d vertical tiles: P = q0 ∪ q2 ∪ · · · ∪ qd−1. Also if P = I × ω is a
multitile then the horizontal and vertical decompositions are related by

Gpj
=

(
aj bj
bj aj

)
⇒ Gqm =

(
ad−1 γm(d−1)bd−1

γm(d−1)bd−1 ad−1

)
· · ·
(

a1 γmb1
γmb1 a1

)(
a0 b0
b0 a0

)

4.3 Swapping Functions and Plancherel Inequality

Thinking of the Plancherel Inequality as a type of d-adic imbedding theorem
we look for a function β : SU(1, 1) → R+ (using the Bellman function
technique, see [2]) such that β(G) ≍ log |a| and has the swapping property

d−1∑

j=0

β(Gqj) ≤ d

d−1∑

j=0

β(Gpj
). (8)

The swapping inequality says that for a multitile P , up to a factor of d,
the horizontal multitiles dominate the vertical multitiles with respect to β.
Suppose that the support of F is contained in the interval [0, dK) for some
large K and consider the rectangle [0, dK) × [0, dK). If we let pk be the set
of all tiles with |Ip| = dk. Applying the swapping inequality iteratively we
have

d−K
∑

p∈p−K

log |ap| ≤ CdK
∑

p∈pK

log |ap|. (9)

If we note that the set p−K contains only the tile [0, d−K)× [0, dK), then by
the results in section 2 we see that the left hand side of the above inequality is
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exactly || log |a(·,∞)|||L1(dk). The right hand of the inequality can be shown to
be less than a constant times ||F ||22 by using the operator Gronwall inequality.

Finding a function β : SU(−1, 1) → R+ such that β(G) ≍ log |a| is not
difficult; rather, the difficultly is finding a function that satisfies the swapping
inequality. In the case when d = 2, we can take β(G) = log ||G||HS (where
||G||HS is the Hilbert-Schmidt norm of G). Verifying that the function β
satisfies the swapping inequality is a trivial computation which boils down
to the quasi-triangle inequality. Unfortunately the logarithm of the Hilbert-
Schmidt norm doesn’t work when d ≥ 3, as a laborious computation shows.
In the case when d ≥ 3 we choose the smallest possible number r such that
the function

β(z) =

{
|z|2 − |z|3 |z| ≤ r
ǫ10 + ǫ20arcsinh(|z|) |z| > r

is continuous and ǫ is some small parameter that depends on d only. We
then set β(G) = β(b). This function β is the desired function. It is clear
that up to a factor of d that β(G) ≍ log |a|, as the arcsinh(|z|) = log(|z| +√
|z|2 + 1). Verification of the swapping inequalities is a tedious task which

involves carefully looking at the products Gqm using polynomial inequalities
and Taylor approximations.

4.4 John-Nirenberg Type and Carleson Weak Type In-

equalities

We define a partial order on the set of all tiles (similarly for multitiles) by
saying p < q if and only if Ip ⊆ Iq and ωq ⊆ ωp. The swapping inequality
(8) and several inductions implies the following

Lemma 2. Let q be a finite set of pairwise disjoint tiles and p a collection
of tiles such that

q ⊆
⋃

p∈p

p, ∀q ∈ q

and whenever p and q have non-empty intersection we have q < p. Then

∑

q∈q

|Iq|β(Gq) ≤
∑

p∈p

|Ip|β(Gp) (10)
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4.4.1 Some Terminology

We can similarly define what it means for two multitiles P and Q to be
ordered. A collection of multitiles is convex if whenever P < P ′ < P ′′ with
P and P ′′ in the collection implies P ′ is also in the collection. Suppose that
a collection P of multitiles can be written as a union

P =
⋃

n∈N
Pn

with the property that if P ∈ Pn and Q ∈ Pm with P < Q, then n ≤ m. We
call such a union and ordered splitting of P. A tree is a set T of multitiles
which has a maximal element with respect to the ordering “<”. Now each
element of a tree P has a unique horizontal tile pj(P ) that intersects the
maximal element of the tree, which is called the top. Using this horizontal
tile as a level for an element of a tree we can define a notion of size for a
collection of multitiles: Given a collection of multitiles P, we define

size(P) = sup
T⊆P

|IT |−1
∑

P∈T

∑

j<j(P )

|IP |β(Gpj
).

4.4.2 Calderón-Zygmund and John-Nirenberg Type Results

Given any collection of multitiles P we run the standard stopping time ar-
gument with respect to the size of P to obtain an ordered splitting

P = P∞ ∪
⋃

n∈Z

Pn

such that size(Pk) ≤ 2−4k and Pk is a union of trees Tk such that
∑

T∈Tk

|IT | ≤ C(poly(d))24k||F ||22.

Additionally, for each tree T ∈ Tk with top P contains all elements P ′ ∈ Pk

with P ′ < P .

Assume we have a convex tree T and F vanishes above the lower endpoint
of ωtop. If P is a multitile in T and q is a vertical tile of P , then for k ∈ Iq,
we have

Gq(k) =
∏

P ′∈T :IP⊆I′P (IPT

∏

j<j(P ′)

Gpj
(k) (11)
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With this in mind we define the following

MT (k) = sup
k∈I,J,I⊆J(IT

log
∣∣∣

∏

P∈T :I⊆IP (J

∏

j<j(P ′)

Gpj
(k)
∣∣∣. (12)

For this function we have a weaker John-Nirenberg inequality, namely,
∣∣∣
(
k ∈ IT : MT (k) ≥ 4dΓ22λsize(T )

)∣∣∣ ≤ 2−cλ
2|IT |, (13)

where Γ is the constant that compares log |a| and β(G) up to a polynomial
in d.

4.4.3 Carleson Inequality

The previous subsection provides us all we need to prove the Carleson in-
equality. As in the classical Carleson proof, we define an exceptional set and
show that it has measure controlled by Γ2λ||F ||22 and off the exceptional set
we have a good bound on the supremum. The components of the exceptional
set are defined by

Ek =

{ ⋃
T∈Tk

IT k < K⋃
T∈Tk

{k ∈ IT : MT (k) ≥ 4d22(k−K)2−4k} k ≥ K

whereK is a large parameter and the trees Tk are defined in the stopping time
argument. Setting E =

⋃
Ek and using the above argument we have that

|E| ≤ Γ2λ||F ||22. Finally we show that off of the exceptional set log |G(k, x)|
is smaller than Cdλ−1.
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5 The endpoint case of the Bennett-Carbery-

Tao multilinear Kakeya conjecture

after Larry Guth [5]
A summary written by Yen Do

Abstract

We prove the Bennett-Carbery-Tao multilinear Kakeya conjecture
using a variant of the Ham Sandwich theorem and a geometrical ana-
logue of Dvir’s argument.

5.1 Introduction

The Kakeya set conjecture [6] asserts that if a set E ⊂ Rn contains a unit line
in every direction, it must have Hausdorff and Minkowski dimension equal
to n. Wolff [7] introduced a finite field model of the conjecture, which was
recently proved by Dvir [3] using a dimension argument. In the Euclidean
setting, it is possible to formulate a maximal-but-discretised version, which
implies the set conjecture (using standard arguments, see for instance [2]).

To state the maximal conjecture, let T be a collection of δ× 1 cylindrical
tubes (i.e. δ-long tube whose cross section is an (n − 1)-dimensional unit
disk) pointing in a set of sufficiently separated directions: any two directions
are at least δ-away from each other.

Conjecture 1 (Kakeya maximal). The set Eµ of points with intersection
multiplicity & µ (i.e. contained in & µ tubes) has volume not less than

C(ǫ, n)δ−ǫµ− n
n−1

for any ǫ > 0.

A related problem is to study overlap properties of a set of tubes, for in-
stance a multilinear Kakeya conjecture was formulated by Bennett-Carbery-
Tao [1]. A particular consequence of this conjecture says that: in a counter
example to conjecture 1, a typical point in Eµ will have intersection mul-
tiplicity contributed largely by tubes whose directions almost belong to a
common hyperplane.

To formulate this multilinear conjecture, we divide T into n subsets
T1, . . . , Tn containing respectively A(1), . . . , A(n) tubes, so that:
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(i) in each subset the directions of the tubes are close;
(ii) any family v1, . . . , vn of n unit directions with exactly one represen-

tative from every Tk will not be degenerate: the solid angle formed by these
directions has nontrivial degree:

det(v1, . . . , vn) & θ (1)

For x ∈ Rn, let N(x) be the number of families (as in (ii)) such that every
member of the family possesses x, i.e.

N(x) =

n∏

k=1

∑

U∈Tk

1U(x)

The multilinear Kakeyea conjecture, which is now proved by Guth [5], says:

Theorem 2 (Multilinear Kakeya estimate, Guth).

∫
N(x)

1
n−1dx .n θ

− 1
n−1

n∏

j=1

A
1

n−1

j

Note that the bound on the RHS doesn’t depends on δ, thus we can (and
will) take the tubes in T to be of infinite length (in our proof).

Below we sketch why theorem 2 implies certain structural properties of
a counter example T to conjecture 1. Assume that T can be divided it into
the above configuration. Let

E∗
µ := {x ∈ Rn : for every 1 ≤ k ≤ n, x belongs to & µ tubes in Tk}

be a subset of Eµ where the global intersection multiplicity of x is contributed
almost equally by every Tk. Since N(x) & µn for x ∈ E∗

µ, theorem 2 implies
that

E∗
µ . µ

−n
n−1 .

This means that for a typical point of Eµ (i.e. in Eµ \E∗
µ), its multiplicity is

contributed mostly by tubes comming from the same subcollection, i.e. with
close directions.
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5.2 Proof of theorem 2

To prove theorem 2, we will need a generalized version of the following Ham
Sandwich theorem (will be referred to as HS theorem):

Ham Sandwich theorem. Let U1, . . . , Un be finite volume open sets in Rn.
Then there is a hyperplane H that bisect every Ui.

This theorem was generalized by Gromov [4] to N =
(
n+d
d

)
−1 sets, where

the hyperplane should be replaced by an algebraic hypersurface of degree ≤ d.
Guth’s generalization of the HS theorem is formulated using the notion of
visibility of a surface.

For any vector v ∈ R we denote by πv the projection along direction v
(into the hyperplane v⊥ ⊂ Rn).

Definition 3 (Directed volume). For any surface S ⊂ Rn and any unit
vector v ∈ Rn, the volume of S in direction v is defined by

VS(v) =

∫

v⊥
|S ∩ π−1

v (y)|dy.

If v is not a unit vector, define VS(v) := |v|VS( v
|v|).

Essensially, VS(v) is the volume of the projection of S along direction v,
counting multiplicity. Equivalently, we can define:

VS(v) =

∫

S

|v ·Nx|dS(x)

here the integration is over S using the surface area measure, and Nx denotes
the normal vector at x.

Definition 4 (Visibility). The visibility of S is defined by:

Vis[S] :=
1

Vol
(
Hull{|v| ≤ 1 : VS(v) ≤ 1}

)

For an unit vector v, S is geometrically less visible in direction v when
VS(v) is small. Essentially, 1

Vis[S]
is large if there are only a small number of

directions where S is not visible. This definition depends on the relative size
of S, however in our applications S will have size comparable to 1.
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When S is a variety of degree ≤ n (which is easily parametrized by
RPN through the tuple of its coefficients - we’ll simply say S ∈ RPN), it
is not hard to see that, as function of S, the directed volume VS(v) (hence
the visibility Vis[S]) is not continuous on RPN . Since continuity will be
important for our generalization of the Ham Sandwich theorem, we’ll need
to modify our directed volume (and hence the visibility) by averaging over
small open neighborhood of S ∈ RPN (using the angle metric). Under this
operation, all the needed properties of VS and Vis[S] are preserved up to
some small c > 0, which will be harmless in our proof. We’ll denote the new
directed volume and visibility by V S(v) and Vis[S].

The following basic estimate is useful: For any nonempty surface S and
any family of directions v1, . . . , vn, if V S(vj) ≥ 1 for every j then

Vis[S] .n

∏n
j=1 V S(vj)

det(v1, . . . , vn)
(2)

This estimate can be easily proved using the definition of visibility. Below is
the needed generalization of the Ham Sandwich theorem:

HS theorem and visibility. If M is a function that assigns an integer
value to each cube in the standard unit lattice of Rn, then there exists an
algebraic hypersurface Z such that Vis[Z ∩Qk] ≥M(Qk) for every cube Qk,

while the degree d of Z is controlled by [
∑

kM(Qk)]
1
n .

Proof of theorem 2. For each cubeQk in the standard unit lattice, letMj(Qk)
be the number of tubes in subcollection Tj that intersect Qk, and F (Qk) =∏

1≤j≤nMj(Qk) the number of families (with one from each subcollection)

that intersect Qk. Then
∫
Qk
N(x)

1
n−1dx . F (Qk)

1
n−1 , so it sufficies to show

∑

k

F (Qk)
1

n−1 .n θ−
1

n−1

n∏

j=1

A(j)
1

n−1

⇔ θ
[∑

k

F (Qk)
1

n−1

]n−1

.n

n∏

j=1

A(j) (3)

Since T is finite, the tranversality condition (1) implies that only a finite
number of Qk contributes to the sum

∑
F (Qk). Let Q be the set of these

cubes.
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The next argument essentially resembles Dvir’s argument in the finite
field setting. Using the above variant of the HS theorem, for any function m
that assigns a nonnegative integer value to each Qk, we can find a variety Z
of degree d such that it intersect lots of cubes in a highly visible surface,

Vis[Z ∩Qk] & m(Qk) ∀Qk (4)

while having a controlled degree

d .n [
∑

k

m(Qk)]
1
n (5)

We’ll choose m such that the right hand side of (5) is very large compared
to |Q|. At the end of this argument, it is the relative ratio between m(Qk)’s
that matters, so this assumption will be harmless.

Now, by adding a number of hyperplane to Z if necessary, we can assume
that V Z∩Qk

(v) ≥ 1 for every unit direction v and for every Qk ∈ Q (basically
for each Qk we need about On(1) hyperplanes, so totally need about On(|Q|)
hyperplanes). Adding hyperplane to Z is (at worst) equivalent to multiplying
a polynomial of degree 1 to the polynomial associated with Z. Thus, these
additions won’t significantly increase the (bound (5) on the) degree of Z, due
to our choice of m. Therefore, we can safely assume that (5) remains valid.

For each tube Tj,a in the subcollection Tj we always have:

∑

Qk ∈ Q that intersects Tj,a

V Z∩Qk
(direction of Tj,a) . d (6)

This is because of the following reasons:
(i) For any Qk that intersects Tj,a, the projection of every Z ∩ Qk along

the direction of of Tj,a will be inside a slightly thickened version of the section
of the cylinder Tj,a (so will have volume .n 1); and

(ii) The projection multiplicity of any point on Z, along any given direc-
tion, is controlled by the degree of the polynomial, which is d.

So essentially (6) is analogous to the finite field statement that a nontrivial
homogeneous polynomial of degree d cannot vanish on more than d points.
Now, by choosing a tube Tj,a that nicely intersects lots of cubes Qk’s, we can
then get a lower bound on the LHS of (6) and get a lower estimate for d.
Then, by combining with (5) and an optimization argument, we can get an
estimate for

∏
A(j) in terms of F (Qk) and deduce the desired estimate (3).
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To choose such Tj,a, we’ll use an averaging argument. First, consider a
family of tubes T (1), . . . , T (n), one representative from each subcollection Tk,
with respective unit directions v1, . . . , vn. If for every 1 ≤ j ≤ n, Qk∩T (j) 6=
∅, then using (2), (1), and (4), we have

m(Qk) . Vis[Z ∩Qk] .n

∏n
j=1 V Z∩Qk

(vj)

det(v1, . . . , vn)
. θ−1

n∏

j=1

V Z∩Qk
(vj)

so m(Qk) . θ−1
∏n

j=1 V Z∩Qk
(vj). Fixing Qk and summing over all possible

such combinations of T (1), . . . , T (n), we get

F (Qk)m(Qk) .n θ−1
n∏

j=1

( ∑

Tj,a ∈ Tj that intersects Qk

V Z∩Qk
(Tj,a’s direction)

)

So by Holder’s inequality, we have

∑

Qk

F (Qk)
1
nm(Qk)

1
n .n θ−

1
n

∑

Qk

n∏

j=1

( ∑

Tj,a intersects Qk

V Z∩Qk
(Tj,a’s direction)

) 1
n

≤ θ−
1
n

n∏

j=1

(∑

Qk

∑

Tj,a intersects Qk

V Z∩Qk
(Tj,a’s direction)

) 1
n

≤ θ−
1
n

n∏

j=1

(
dA(j)

) 1
n

by (6)

Consequently, we get a lower bound for d:

d &n

θ
1
n

∑
Qk
F (Qk)

1
nm(Qk)

1
n

∏n
j=1A(j)

1
n

Combining with (5), we get

[∑

k

m(Qk)
] 1

n &n

θ
1
n

∑
Qk
F (Qk)

1
nm(Qk)

1
n

∏n
j=1A(j)

1
n

=⇒
n∏

j=1

A(j) &n θ
[∑

Qk

F (Qk)
1
n

( m(Qk)∑
km(Qk)

) 1
n
]n
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Optimizing the RHS over αk := m(Qk)
P

k m(Qk)
≥ 0 under the constraint {∑αk =

1} (this can be done using Holder’s inequality), we see that the best choice

αk =
F (Qk)

1
n−1

∑
Qk
F (Qk)

1
n−1

will give us the desired estimate (3).
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6 The (weak-L2) boundedness of the quadratic

Carleson operator

after Victor Lie
A summary written by S. Zubin Gautam

Abstract

We summarize the proof in [Lie08a] of the weak-type (2, 2) bound-
edness of the generalized Carleson maximal operator with arbitrary
quadratic phase functions.

6.1 Introduction

(Note to the reader: This summary is admittedly quite long. The first seven
pages are basically crucial, the next three are fairly important, and the re-
mainder should be read only if stamina permits.)

By the Stein maximal principle ([Ste61]), Carleson’s celebrated theorem
on the almost-everywhere convergence of Fourier series of L2 functions ([Car])
is equivalent to the boundedness of the Carleson maximal operator C from
L2(T) to L2,∞(T), where

C f(x) := sup
a>0

∣∣∣∣
∫

T

f(x− y) eiay
1

y
dy

∣∣∣∣ .

As a generalization of Carleson’s theorem, Stein conjectured that the degree-
d polynomial Carleson operator Cd given by

Cd f(x) := sup
p∈R[y]

deg(p)≤d

∣∣∣∣
∫

T

f(x− y)eip(y)
1

y
dy

∣∣∣∣

enjoys this same boundedness (in fact, he conjectured that Cd should be
strong-type (p, p) for all 1 < p < ∞); of course, the operator C1 coincides
with the Carleson operator C.

A weaker form of the conjecture was verified by Stein ([Ste93]) for d =
2 and by Stein and Wainger ([SW]) for general d; their results treat the

modified operators C̃d in which the supremum is taken only over polynomials
p ∈ R[y] with no linear term, so of course they cannot be viewed as actual
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generalizations of Carleson’s theorem.10 Our goal is to prove the following
theorem, which removes this restriction in the case d = 2:

Theorem 1. Let T = C2, so that

Tf(x) = sup
a,b∈R

∣∣∣∣
∫

T

f(x− y)ei(ay+by
2) 1

y
dy

∣∣∣∣ .

Then
‖Tf‖Lp(T) .p ‖f‖L2(T)

for all 1 ≤ p < 2.

Combined with the techniques of [Ste61], this theorem implies that T is
weak-type (2, 2); in fact, a little modification of the arguments given below,
together with interpolation, can show that T is in fact of strong type (p, p)
for all 1 < p < 2. The analogous result for the more general polynomial
Carleson operators Cd is proven in [Lie08b].11

From a macroscopic point of view, the proof of Theorem 1 in [Lie08a]
follows the steps of C. Fefferman’s proof of Carleson’s theorem in [Fef] quite
faithfully; as such, and as with most time-frequency proofs, the coarsest
decomposition of the argument is into two main steps: a decomposition or
“discretization” of the operator T as a sum of operators TP whose outputs
are well-localized in both time and frequency, and a selection algorithm by
which one reassembles the pieces TP in a suitable manner to provide good
bounds on T.

The discretization procedure used in [Fef] splits the Carleson operator C
as a sum of operators CP , where each P is a “Heisenberg tile” in R2 (or T×R):
a rectangle of the form P = I × ω, with I and ω dyadic intervals such that
|I| |ω| = 1 (so that P has area 1).12 Here, loosely speaking, I and ω are the

intervals on which CP f and ĈP f , respectively, are large; in other words, I

10The absence of modulation-invariance afforded by this restriction moves one out of
the province of time-frequency analysis; the proofs of [Ste93] and [SW] rely mainly on
oscillatory integral techniques.

11The full-force version of Stein’s conjecture (viz., with Lp-boundedness for all 1 < p <

∞) remains open. However, the techniques of [Lie08a] can be used to show T : Lp → Lp−ε;
removal of the ε seems to be more of a technical obstacle than a conceptual one.

12Discretization via Heisenberg tiles has by now become more or less a template for
decomposing operators that commute with translations and dilations and are modulation-
invariant.
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and ω reflect the “L∞ distribution” of CP f and its Fourier transform, and the
tile P = I×ω should be viewed as a representation of the L∞ time-frequency
localization of CP f . By basic properties of the Fourier transform, one sees
that if ϕ ∈ L2 is time-frequency localized to a tile P , then any composition
of dyadic translations, modulations, and dilations applied to ϕ will move its
localization to another tile P ′; in other words, the group generated by such
transformations may be viewed as acting on the space of tiles. The quadratic
Carleson operator T, however, enjoys an additional symmetry which should
be respected in its decomposition: it is quadratic-modulation–invariant; i.e.,
T Qb = T for all b ∈ R, where Qb f(x) := eibx

2
f(x). The group {Qb | b ∈

R} no longer acts on the space of tiles we have defined thus far; if ϕ is
L∞ localized to P = I × ω, Qb ϕ will be L∞ time-frequency localized to
I × Ω for some interval Ω which is generically much larger than ω, so Qb

destroys optimal time-frequency localization.13 In light of this state of affairs,
the method of decomposition via standard Heisenberg tiles appears to be
unsuitable in the presence of quadratic-modulation–invariance, and moreover
the very concept of localization in the sense of L∞ distribution seems inapt.
The key insight toward overcoming this difficulty is that one can approach
time-frequency localization from a relative perspective, by considering when
|〈Qb ϕ,Qb′ ϕ〉| is large, as opposed to simply studying the size of |Qb ϕ| and

|Q̂b ϕ|. The upshot of this approach is that one generalizes the notion of a
“tile” from rectangles to suitable area-one parallelograms in the phase plane
T × R, and to each such tile P one associates a “piece” TP of the operator
T, as we discuss in Sections 6.2 and 6.3.

Once this decomposition T =
∑

P TP has been accomplished, the second
stage of the proof, the reassembly of the pieces TP , essentially follows Fef-
ferman’s algorithm for the Carleson operator step by step; as we shall see,
the main idea is carefully to isolate situations in which our pieces do not en-
joy as much cancellation as Fefferman’s and to apply “positive” or maximal
methods in these situations. That being said, significant effort is required to
effect this adaptation to the quadratic-phase setting.

6.2 Tiles: The relative perspective

We now elaborate on the “relative” or “relational” approach to time-frequency
localization alluded to above. The idea is to interpret the localization of, say,

13The optimality here is in view of the uncertainty principle.
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Qb ϕ by studying |〈Qb ϕ,Qb′ ϕ〉| for b, b′ ∈ R. Let ϕ be a nice L2 function
supported in some dyadic interval I with ϕ̂ adapted to an interval of length
|I|−1 near the origin and ‖ϕ‖2 . 1; appealing to stationary/non-stationary
phase considerations, we have

|〈Qb ϕ,Qb′ ϕ〉| . (sup
x∈I

|2bx− 2b′x| |I|)−1/2 :=

(
distI(lb, lb′)

|I|−1

)−1/2

.

Here ls is the line ξ = 2sx in the x-ξ plane; note that we define the “dis-
tance relative to I” distI(lb, lb′) with a supremum rather than an infimum.
Heuristically, by varying b′, we can think of Qb ϕ as being localized near a
parallelogram Pb in the time-frequency plane with the following properties:

• Pb has two sides of length |I|−1 parallel to the ξ-axis and centered on
the line ξ = 2bx.

• The projection of Pb to the x-axis is the interval I = supp(ϕ).

The reader is urged here and throughout this summary to sketch pic-
tures. Additionally, he or she is invited to carry out a similar analysis of
|〈Mc ϕ,Mc′ ϕ〉|, where Mc f := eic ·f is a modulation operator; in this case
our relative perspective will yield exactly the same rectangular tile given
by the classical approach via L∞ distribution. Combining these reasonings,
we view Mc Qb ϕ as localized to a parallelogram obtained by translating the
above parallelogram Pb by c units in the ξ-direction (i.e., vertically). We can
now precisely define our tiles.

Definition 2. A tile is a triple P = [α, ω, I], where α, ω ⊂ R and I ⊂ T are
half-open dyadic intervals with |α| = |ω| = |I|−1. The collection of all such
tiles P is denoted P.

In the sequel, we will glibly identify a tile P with the corresponding
parallelogram in the x-ξ time-frequency plane obtained as above. We will
occasionally abuse terminology by referring to other parallelograms (e.g. P ∗

ℓ

and P ∗
r below) as “tiles,” provided they arise from genuine tiles in a suitably

natural manner. Finally, we define the “central line” of a tile P to be the
unique line bisecting both sides of P parallel to the frequency axis.
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6.3 Decomposition

We first note that Tf can be rewritten as

Tf(x) = sup
b,c∈R

|Mc Qb H Q∗
b M∗

c f(x)| = sup
l

|Tlf(x)|,

where H is the Hilbert transform, the latter supremum is taken over lines
l(x) = c+ 2bx, and the operator Tl is given by

Tlf(x) =

∫

T

f(x− y)ei
(
l(x)y−by2

)
1

y
dy.

As in Fefferman’s proof of Carleson’s theorem, we begin by linearizing the
supremum in our operator by defining a measurable function x 7→ lx, which
should be thought of as picking out the l attaining the supremum over all
lines. Then, provided that the bounds we obtain be uniform over all choices
of x 7→ lx, we can replace T by

Tf(x) = Tlxf(x) =

∫

T

f(x− y)ei
(
lx(x)y−b(x)y2

)
1

y
dy,

where lx(·) = c(x) + 2b(x) · .
As a preliminary decomposition, we break T up according to time scales;

namely, we split the portion 1
y

of the kernel as 1
y

=
∑

k≥0 ψk, with ψk =

2kψ(2k · ) for some ψ ∈ C∞
c supported away from 0, and we obtain

Tf(x) =
∑

k≥0

Tkf(x) :=
∑

k≥0

∫

T

f(x− y)ei
(
lx(x)y−b(x)y2

)
ψk(y) dy.

Now our goal is further to refine the Tk into pieces TP associated to tiles
P at scale k; the motivation for the following definition is that a tile P should
contribute only when it captures some of both the time and the frequency
content of Tf . To this end, let P = [α, ω, I] ∈ P, and set

E(P ) := {x ∈ I | lx ∈ P};

here we say “l ∈ P” when the line l crosses both sides of P that are parallel
to the frequency axis. At last, for P = [α, ω, I] with |I| = 2−k, we define

TPf(x) := Tkf(x)χE(P )(x).
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Now for a fixed scale k the collection {E([α, ω, I]) | |I| = 2−k} is a
partition of T, whence

Tkf(x) =
∑

P=[α,ω,I]

|I|=2−k

TPf(x).

This in turn gives T =
∑

P∈P TP , which is our final decomposition.
For posterity, we record the explicit forms of our “building blocks” TP

and their adjoints:

TPf(x) =

(∫

T

f(x− y)ei
(
lx(x)y−b(x)y2

)
ψk(y) dy

)
χE(P )(x), (1)

and

T∗
Pf(x) = −

∫

T

(
χE(P )f

)
(x− y)ei

(
lx−y(x−y)y+b(x−y)y2

)
ψk(y) dy. (2)

In accordance with the heuristics we have set forth, we think of TP as time-
frequency localized to to the tile P as before, and we think of T∗

P as localized
to a “bi-tile” P ∗ = P ∗

ℓ ⊔P ∗
r . Here P ∗

r = [α∗
r , ω

∗
r , I

∗
r := 2I+ 9

2
|I|] is a parallelo-

gram obtained by time-dilating P and sliding it to the right along its central
line; of course |α∗

r| = |ω∗
r | = |α| = |ω|. P ∗

ℓ = [α∗
ℓ , ω

∗
ℓ , I

∗
ℓ ] is obtained similarly

by sliding to the left; again, the reader is urged to draw a picture.

From (1), we obtain the pointwise estimate |TPf | .
(

1
|I∗|
∫
I∗
|f |
)
χE(P )

and the L2 operator norm estimate ‖TP‖ ∼
(

|E(P )|
|I|

)1/2

.

6.4 Basic tools and philosophy of estimation

In this section we will give a heuristic overview (borrowed from [Fef]) of
the proof of Theorem 1, which will hopefully make the productivity of our
decomposition apparent. Here and in the sequel, for a collection of tiles
S ⊂ P, we write

TS :=
∑

P∈S
TP .

Given the estimates on TP noted just above, the following definition
presents itself naturally:
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Definition 3. For P = [α, ω, I] ∈ P, the density factor of P is

A0(P ) :=
|E(P )|
|I| .

Partition the space of tiles as P =
⋃
n Sn, with Sn := {P |A0(P ) ∼ 2−n};

for each tile P ∈ Sn, we have ‖TP‖ ∼ 2−n/2. If we actually had

‖TSn‖ ∼ 2−n/2,

we could sum in n and obtain L2-boundedness of T by our decomposition. It
turns out, perhaps surprisingly, that this latter estimate is almost true. The
idea is to consider increasingly rich families of tiles P ⊂ P such that

‖TP‖ ∼ max
P∈P

‖TP‖, (3)

with the hope of eventually filling up the Sn. The first step is to prove
estimate (3) for basic clustered families called “trees” (cf. Definition 8 and
Lemma 12). From this point, we hope to combine multiple trees and still
preserve (3). This can be guaranteed for certain well-arranged collections of
trees, morally by arranging for almost-orthogonality between the constituent
trees; these families are called “forests” (cf. Definition 9 and Proposition 11).
Finally, we will show roughly that Sn can be partitioned into n forests, from
which we obtain a summable estimate in n.

Now of course the density factor A0(P ) yields the operator norm ‖TP‖ for
a single tile, and it turns out to suffice for controlling operators associated to
trees. However, A0 cannot capture the relative oscillation between TP1f and
TP2g; given the outlook of Section 6.2, we would naturally hope to exploit
this oscillation to obtain some cancellation when studying |〈T∗

P1
f,T∗

P2
g〉|.14

The following definition will help us accomplish this:

Definition 4. Let P1, P2 ∈ P with |I1| ≥ |I2|. The geometric factor of the
pair (P1, P2) is (

1 + ∆(P1, P2)
)−1

,

where

∆(P1, P2) :=
inf l1∈P1

l2∈P2

distI2(l1, l2)

|ω2|
.

14This will be crucial in particular for the aforementioned almost-orthogonality. We
examine T∗

P f rather than TP f here due to smoothness properties; cf. (1) and (2).

44



To see how the geometric factor actually encodes oscillation, we appeal
to stationary phase considerations similar to those of Section 6.2, as follows.
Draw two tiles P1 and P2 for which I∗1 ∩ I∗2 6= ∅ (here I∗j is the projection
of the bi-tile P ∗

j to the time axis), so that 〈T∗
P1
f,T∗

P2
g〉 is not trivial by

support considerations. A good heuristic at this point is simply to suppose
that for all x ∈ E(Pj), we actually have lx = lj, the central line of the tile Pj .
Now consider the point xi1,2 on the time axis over which these central lines
intersect, i.e. l1(x

i
1,2) = l2(x

i
1,2). The crucial observation, given the form (2)

of T∗
P , is the following:

• For x near the intersection point xi1,2 the phases of T∗
P1
f(x) and T∗

P2
g(x)

are roughly the same (since lP1(x
i
1,2) = lP2(x

i
1,2)), so we expect little

cancellation.

• For x far from xi1,2, we have significant phase difference between the
two terms, and we can hope to exploit cancellation.

To be a bit more precise, one fixes some small ε0, and defines the ε0-critical
intersection interval I1,2 centered at xi1,2, of length

min{|I1|, |I2|}
(
1 + ∆(P1, P2)

)ε0− 1
2 .

Applying L∞ estimates inside I1,2 and the method of nonstationary phase
(i.e. integration by parts) outside, we obtain the following estimates:

Lemma 5. For P1, P2 ∈ P, let χ̃Ic
1,2

be a smoothed-out version of χIc
1,2

. Then

∣∣∣∣
∫
χ̃Ic

1,2
T∗
P1
f T∗

P2
g

∣∣∣∣ .n,ε0

(
1 + ∆(P1, P2)

)−n
∫
E(P1)

|f |
∫
E(P2)

|g|
max{|I1|, |I2|}

,

∣∣∣∣∣

∫

I1,2

T∗
P1
f T∗

P2
g

∣∣∣∣∣ .
(
1 + ∆(P1, P2)

)ε0− 1
2

∫
E(P1)

|f |
∫
E(P2)

|g|
max{|I1|, |I2|}

,

and

‖TP1T
∗
P2
‖2 . min

{ |I1|
|I2|

,
|I2|
|I1|

}(
1 + ∆(P1, P2)

)−1
A0(P1)A0(P2).

The moral one should take from this whole discussion is that far away
from intersections we will morally be at liberty to apply Fefferman’s methods,

45



while close to intersections we will need to argue our problems away with
“positive” methods (i.e. without recourse to cancellation).

Finally, we can introduce the correct substitute for A0 by which we will
actually partition P; in view of Lemma 5, it measures how strongly P inter-
acts with other tiles:

Definition 6. The mass of P ∈ P is (roughly), for N ≫ 1 fixed,

A(P ) := sup
P ′∈P
I⊂I′

A0(P
′)
(
1 + ∆(P, P ′)

)−N
.

6.5 Ordering, trees, and forests

Armed with these basic tools, we will now start on our way to reassembling
our building blocks TP . The crude initial outlook is that, by our previous
discussions, families P consisting of (geometrically) well-separated tiles P
should give rise to pieces TPf which are essentially pairwise orthogonal; on
the other hand, if the tiles comprising P overlap, more consideration will
be required. Since we will suppress a good number of necessary technical
considerations, many of our definitions and arguments will appear identical
to those of [Fef]. Suffice it to say that the actual treatment of [Lie08a] is
more technically involved, and the remainder of our discussion should be
considered as only morally accurate.

Indeed, as in [Fef], we begin by defining a partial order on P:

Definition 7. Let P1, P2 ∈ P. We declare P1 EP2 iff I1 ⊆ I2 and l ∈ P1 for
every l ∈ P2. Furthermore, we say P1 ⊳ P2 iff P1 E P2 and I1 ( I2.

This order relation is a qualitative counterpart to the quantitative geo-
metric factor, and it too encodes the “degree of overlap” of two tiles. We can
now define our most basic “clustered” sets of tiles; they have the structure
of set-theoretic trees under E.

Definition 8. A tree P with top P0 ∈ P is a collection P ⊂ P such that:

• If P ∈ P, then P E P0.

• If P1, P2 ∈ P and P1 E P E P2, then P ∈ P.

In general we do not require that P0 ∈ P.
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Finally, we will group together reasonably well-separated trees of uni-
formly bounded mass.

Definition 9. A (δ-)forest is a collection {Pj}j of trees with respective tops
Pj = [αj , ωj, Ij] such that:

1. For all j and all P ∈ Pj, A(P ) < δ.

2. For all k 6= j, P 5 Pk for all P ∈ Pj.

3. No point of [0, 1] belongs to more than Kδ−2 of the Ij.

The following two propositions, which are true up to our aforementioned
technical deficiencies, are the key ingredients used to prove Theorem 1. They
treat the “extremal” geometric configurations of sparse and clustered sets of
tiles.

Proposition 10. Let P be a family of pairwise incomparable (re E) tiles with
A(P ) < δ for all P ∈ P. Then there is an absolute constant 0 < η < 1/2
such that

‖TP‖ . δη.

Proposition 11. Let {Pj}j be a δ-forest. Then there is an absolute constant
0 < η < 1/2 and a set F ⊂ T with |F | . δ50K−1 such that

∥∥∥∥
∑

j

TPjf

∥∥∥∥
L2(T\F )

. δη logK‖f‖2

for all f ∈ L2(T).

Proposition 10 will be used extensively for “garbage collection” purposes,
to allow us to reduce families of tiles to nicer subcollections. Its proof is
almost identical to that of its counterpart in [Fef], using a combination of
TT∗ and maximal methods. The proof of Proposition 11 is more involved
and will be described later.

6.6 Proof of Theorem 1

Here we will selectively describe a few aspects of the proof of Theorem 1,
just to give a flavor of the arguments involved.
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We begin by dividing P into dyadic mass blocks as P =
⋃∞

0 Pn, where

Pn := {P ∈ P | 2−n−1 < A(P ) ≤ 2−n}.

The reader will note the use of A rather than A0, as alluded to in Section
6.4.

Our first goal is to reduce Pn to a collection of tiles clustered around
certain maximal tiles whose time intervals do not overlap excessively. To
this end, we take {P̄k = [ᾱk, ω̄k, ĪK ]} to be the set of maximal (re E) tiles in
P subject to the condition A0(P ) ≥ 2−n−1. Let Cn ⊂ Pn consist of those tiles
P ∈ Pn with no ascending chains P ⊳P1 ⊳ . . .⊳Pn of length n+1 contained
in Pn, and set P0

n := Pn \ Cn.
It turns out that every tile P in P0

n (roughly) satisfies P ⊳ P̄k for some
k ∈ N. But by the ascending chain condition Cn can be decomposed as a
disjoint union of at most n families, each comprised of pairwise incomparable
tiles. Applying Proposition 10 gives ‖TCn‖ . 2−nη

′
for some η′ > 0; thus we

are free to throw out Cn and replace Pn with P0
n.

Furthermore, by excising a suitable subset of T that is small enough to
estimate away trivially, and by throwing out all tiles whose time intervals
are contained in this set, we can replace P0

n by a subcollection PG
n (roughly)

satisfying:

• A(P ) ≤ 2−n for all P ∈ PG
n .

• P ∈ PG
n ⇒ P E P̄k for some k ∈ N.

• No x ∈ T belongs to more than K22n of the intervals Īk.

Note that conditions 1 and 3 of Definition 9 are now trivially guaranteed
by the structure of PG

n ; all of the work to obtain actual forests goes toward
satisfying condition 2. For P ∈ PG

n , we define

B(P ) := card{j | P E P̄j}.

Note that, by the final property of PG
n listed above, we have B(P ) ≤ 2M

with M = 2n log2K. We split PG
n dyadically with respect to B as PG

n =⋃M
j=0 Pnj , with Pnj := {P ∈ PG

n | 2j ≤ B(P ) < 2j+1}. In Fefferman’s setting
of rectangular tiles, the sets Pnj themselves turn out to be forests whose
constituent trees are of the form {P | P E P̄k}. For us, more trimming and
technical effort is required to obtain the forest decomposition.

48



Once this decomposition has been effected, one simply adds up the M ∼
2n logK forest estimates of Proposition 11 for each n and then sums in n,
keeping track of the small sets excised in the proposition and in the reduction
to PG

n . One eventually obtains the estimate |{|Tf | > λ}| .ε (‖f‖2/λ)2−ε,
and the desired L2 → Lp estimate follows for all 1 ≤ p < 2.

6.7 Proof of the forest estimate

To conclude, we give a brief sketch of the ideas used to prove Proposition 11.
Since a forest is by definition a collection of trees, the obvious plan of attack
is to control TP for trees P and then to study interactions of such operators.

Lemma 12. Let P be a tree with A(P ) < δ for all P ∈ P. Then ‖TP‖ ≤ δ1/2.

The idea here is to conjugate TP by a suitable operator Mc Qb to move
the top of the tree P to the real axis; from this point, one proceeds just as in
[Fef] with the heuristic “TP behaves like a maximal truncation of the Hilbert
transform.” By this we mean that, up to small error, we have

TPf(x) ≈
∑

k0(x)≤k≤k1(x)

∫
f(x− y)ψk(y) dy

for x ∈ supp(TPf); the second part of Definition 8 is the crux of the matter
here. To obtain the decay in mass, we basically note that the mass bound
guarantees that supp(TP) is a “thin” set.15

Next, we declare two trees P1 and P2 to be δ-separated if every tile from
P1 has geometric factor less than δ with respect to the top of P2 and vice
versa. Consider two such δ-separated trees (with no a priori mass bounds)
whose tops have the same time interval. Then the previous lemma (with
δ = 1) and the philosophy behind Lemma 516 give the estimate

∣∣〈TP1 ∗f,TP2 ∗g
〉∣∣ .n δ

n ‖f‖L2(13I0) ‖g‖L2(13I0) +
∥∥χIcTP1 ∗f

∥∥
2

∥∥χIcTP2 ∗g
∥∥

2
.

Here Ic should be thought of as similar to the critical intersection interval of
the tops of our trees defined above, modified to take δ into account.

15Due to the clustered nature of trees, we shouldn’t expect the geometric factor to
play for us significantly; thus, the accent of the mass bound falls on its density factor
component.

16Lemma 5 treats the simplest non-empty trees, namely those consisting of a single tile.
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To finish the proof, one first trims the trees in the forest down to a certain
nice form, which accounts for the excised set in the statement of Proposition
11. After throwing away some tiles via Proposition 10 to give δ-separation
between our trees, we arrange our forest into a controlled number of “rows”
Rk, each of which consists of trees whose tops have mutually disjoint time
intervals. These rows are arranged so that the above interaction estimate
together with maximal methods yields bounds for the TRk as well as almost-
orthogonality between these operators. An application of the Cotlar–Stein
Lemma completes the proof.
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7 On a Conjecture of E. M. Stein on the Hilbert

Transform on Vector Fields – Part II

after Michael T. Lacey and Xiaochun Li [1]
A summary written by Vjekoslav Kovač

Abstract

We prove the L2 estimate for the Hilbert transform on Lipschitz
vector fields in the plane, assuming the conjectured estimate for the
Lipschitz Kakeya maximal function, presented in the first part of this
exposition.

7.1 Statement of the main result

In the first part of this presentation the following version of the Lipschitz
Kakeya maximal function is introduced. Let v be a Lipschitz vector field on
the plane, i.e. a Lipschitz continuous map v : R2 → S1. For 0 < δ < 1 and
0 < w < 1

100
‖v‖Lip, we define:

Mv,δ,w f(x) := sup
R rectangle
|V (R)|≥δ|R|
w≤W (R)≤2w

1R(x)

|R|

∫

R

|f(y)| dy,

where W (R) is the width of R and |V (R)|
|R| is the portion of R that “respects”

the direction of v.
The authors state the following conjecture in [1]:

Conjecture 1. For some 1 < p < 2, some N ∈ N, all 0 < δ < 1, all
Lipschitz vector fields v, and 0 < w < 1

100
‖v‖Lip, the maximal function Mδ,v,w

is bounded from Lp(R2) to Lp,∞(R2) with norm . δ−N .

The main result we present is a conditional one: assuming that a given
vector field satisfies the above conjecture, we derive boundedness of the
Hilbert transform on that vector field.

For a Schwartz function f : R2 → C we define:

Hv,ε f(x) := p.v.

∫ ε

−ε
f(x− yv(x))

dy

y
.
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In words, Hv,ε is a truncated Hilbert transform along the line through x with
direction v(x). Locally it is one-dimensional, but is performed on functions
of two variables.

To state the result, let us denote by St the operator that restricts the
frequency to an annulus 1/t ≤ |ξ| ≤ 2/t, or explicitly:

St f(x) =

∫

1/t≤|ξ|≤2/t

f̂(ξ)eiξ·x dξ .

In their earlier paper [2] the authors show:

Theorem 2. For any measurable vector field v we have the L2 → L2,∞

estimate
sup
λ>0

λ|{|Hv,∞ ◦ St f | > λ}|1/2 . ‖f‖2 .

This weak estimate is sharp for measurable vector fields. In this exposi-
tion we prove the best known result for Lipschitz vector fields:

Theorem 3. Assume that conjecture 1 holds for some vector field v. There
exists a universal constant K > 0 such that for ε = K/‖v‖Lip and 0 < t <
‖v‖Lip we have

‖Hv,ε ◦ St ‖2 . 1.

Moreover, if v ∈ C1+η, η > 0, then for ε = K/‖v‖C1+η we have

‖Hv,ε ‖2 . (1 + log ‖v‖C1+η)2.

The authors also state the following conjecture, which we do not tackle
in this exposition.

Conjecture 4. Assume that conjecture 1 holds for some vector field v ∈
C1+η, η > 0. There exists a universal constant K > 0 such that for ε =
K/‖v‖C1+η and 2 < p <∞ we have

‖Hv,ε ‖p . (1 + log ‖v‖C1+η)2.

7.2 Notation and terminology

Throughout the note κ will denote a fixed small positive constant.
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A grid is a collection of intervals G so that for I, J ∈ G we have I ∩J = ∅
or I ⊂ J or J ⊂ I. A grid is called central if for all I, J ∈ G with I & J we
have 500κ−20I ⊂ J .

Let ρ denote the rotation by π/2 and e⊥ := ρ(e). A rectangle is ω ⊂ R2

that is a product of intervals with respect to the coordinate system (e, e⊥).
We say that ω is an annular rectangle if ω = (−2l−1, 2l−1) × (a, 2a) for an
integer l with 2l < κa. In that case the scale of ω is scl(ω) := 2l and the
annular parameter of ω is ann(ω) := a.

Annular rectangles will decompose functions in the frequency variables.
The uncertainty principle motivates the following definition.

Two rectangles R and R′ are said to be dual if they are rectangles with
respect to the same coordinate system (e, e⊥), and if we write R = r1 × r2
and R′ = r′1 × r′2, then 1 ≤ |r1| |r′1| ≤ 4, 1 ≤ |r2| |r′2| ≤ 4. The product of two
dual rectangles could be called a phase rectangle, the first component being
the frequency one, the second being the spatial one.

We consider collections of phase rectangles AT that satisfy the following
conditions.

(1) For each s ∈ AT , s = ωs × Rs, the frequency component ωs is an
annular rectangle.

(2) ωs and Rs are dual.

(3) The spatial components Rs are from the product of central grids.

(4) For each s ∈ AT the family {1000κ−100R : ωs ×R ∈ AT } covers R2.

(5) ann(ωs) is of the form 2j for some j ∈ Z.

(6) ♯{ωs : scl(s) = scl, ann(s) = ann} & ann
scl

(7) scl(s) ≤ κ ann(s)

(8) There are auxiliary sets ωs, ωs1, ωs2 ⊂ T associated to s such that Ω :=
{ωs, ωs1, ωs2 : s ∈ AT } is a grid in T.

(9) ωs1 ∩ ωs2 = ∅ and |ωs| ≥ 32(|ωs1| + |ωs2| + dist(ωs1, ωs2))

(10) ωs1 lies clockwise from ωs2 on T.

(11) |ωs| ≤ K scl(ωs)
ann(ωs)
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(12) { ξ
|ξ| : ξ ∈ ωs} ⊂ ρ(ωs1)

Collections AT satisfying the above conditions will be called annular tiles.

∗∗ ∗
We are going to associate three different functions to each phase rectangle.
Let ϕ be a fixed Schwartz function for which ϕ̂ is nonnegative, supported

on a small ball B(0, κ), and equal to 1 on B(0, κ/2). We associate the fol-
lowing wave packet to a tile s ∈ AT :

ϕs := Modcenter(ωs) Trancenter(Rs) Dil
(2)
Rs
ϕ.

Here Dil
(2)
Rs

denotes the L2 normalized dilation operator, i.e. D
(2)
I×J f(x1, x2) :=

(|I| |J |)−1/2f(x1

|I| ,
x2

|J |).

Suppose that (ψt)t>0 are such that ψ̂t is supported in [−θ − κ,−θ + κ],
θ > 0, and |ψt(x)| .N (1 + |x|)−N for N ∈ N. Define

ψs(y) := scl(s)ψscl(s)(scl(s)y)

and

φs(x) :=

∫

R

ϕs(x− yv(x))ψs(y) dy = 1ωs2(v(x))

∫

R

ϕs(x− yv(x))ψs(y) dy

for every s ∈ AT .

7.3 Main ingredients of the proof

The model operator we consider acts on Schwartz functions and is defined
by

Cannf :=
∑

s∈AT
ann(s)=ann

scl(s)≥‖v‖Lip

〈f, ϕs〉φs .

Remember that ann(s) = 2j for some j ∈ Z, so let us also add up over ann
to define:

C :=
∞∑

j=1

C2j .

The proof of theorem 3 follows from the following two lemmas by aver-
aging over over all translations, dilations and rotations of grids.
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Lemma 5. Assume that the vector field v is Lipschitz and satisfies conjecture
1. For all ann ≥ ‖v‖−1

Lip the operator Cann extends to a bounded linear map
on L2(R2), with ‖Cann‖2 . 1.

We remark that for 2 < p <∞ the only condition needed for ‖Cann‖p . 1
is measurability of v, a result from [2].

Lemma 6. Assume that v ∈ C1+η and ‖v‖C1+η ≤ 1 for some η > 0, and
again that v satisfies conjecture 1. Then ‖C‖2 . 1 and additionally for all
l ∈ Z we have:

∥∥∥
+∞∑

j=−∞

∑

s∈AT
ann(s)=2j

scl(s)=2l

〈f, ϕs〉φs
∥∥∥

2
. (1 + log(1 + 2−l‖v‖C1+η)) .

The operators Cann and C are constructed from a kernel which is a smooth
analogue of the truncated kernel p.v. 1

t
1{|t|≤1}. In the proof of theorem 3 we

pass to a smooth kernel in the following way. One can choose Schwartz
kernels (ψ(1+κ)n)n∈Z such that for

K(t) :=
∑

n∈Z

an(1 + κ)nψ(1+κ)n((1 + κ)nt)

we have p.v. 1
t
1{|t|≤1} = K(t) − K(t). Here |an| . 1 for n ≥ 0, and |an| .

(1 + κ)−n for n < 0. The main part of the sum is for n ≥ max(0, ‖v‖C1+η)
and corresponds to the operator C. For the part of the sum where n <
max(0, ‖v‖C1+η) we use rapid decay of coefficients an and the estimate from
lemma 6.
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8 Return Times Theorem via Time-Frequency

Fourier Analysis

after Demeter, Lacey, Tao and Thiele [2]
A summary written by Patrick LaVictoire

Abstract

In this first of two summaries on [2], we reduce the extension of
Bourgain’s Return Times Theorem to a theorem in time-frequency
Fourier analysis regarding a model operator; this is complementary to
the presentation of M. Bateman.

8.1 Introduction

This summary and that of M. Bateman will together cover the result of
Demeter, Lacey, Tao and Thiele [2] extending the Return Times Theorem
beyond the range of exponents implied by duality.

We consider dynamical systems X = (X,Σ, µ, τ), where (X,Σ, µ) is a prob-
ability space and τ : X → X is a measure-preserving transformation. We
wish to examine the range of exponents 1 ≤ p, q ≤ ∞ for which the following
theorem is valid:

Theorem 1 (Return Times Theorem for Exponents p, q). Let X = (X,Σ, µ, τ)
be a dynamical system. For each function f ∈ Lp(X), there exists a univer-
sal set X0 ⊆ X with µ(X0) = 1 such that for each second dynamical system
Y = (Y,F , ν, σ), each g ∈ Lq(Y ) and each x ∈ X0, the averages

lim
N→∞

1

N

N∑

n=1

f(τnx)g(σny)

converge ν-almost everywhere in Y .

Bourgain [1] proved this theorem originally for p = q = ∞, which implies
the entire duality range 1

p
+ 1

q
≤ 1 by an application of Hölder’s inequality

to the relevant maximal inequality. Assani, Buczolich and Mauldin [4] have
produced a negative result for p = q = 1.
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The main result of [2] is an extension of the Return Times Theorem to
all p > 1, q ≥ 2 by a method of time-frequency Fourier analysis. In this
summary, we will show how the main theorem reduces to an inequality for
a model operator (Theorem 5), working backward to show that a series of
intermediate results each imply Theorem 1; the complementary chapter by
M. Bateman will then prove Theorem 5. In some places, we will follow the
structure of a recent preprint by Demeter [3] which uses similar techniques
to extend the range of exponents to all 1 ≤ p, q ≤ ∞ with 1

p
+ 1

q
< 3

2
.

8.2 From Ergodic Theory to the Real Line

8.2.1 Reduction to a Maximal Ergodic Inequality

In many problems of ergodic theory, an a.e. convergence result typically
reduces to a result for convergence for a dense class of functions, coupled
with a maximal inequality. Since we already have Theorem 1 for p = q = ∞,
we claim

Lemma 2. Suppose that for p and q we have the maximal inequality

∥∥∥∥∥∥
sup
Y

sup
‖g‖Lq(Y )=1

∥∥∥∥∥sup
N

| 1

N

N∑

n=1

f(τnx)g(σny)|
∥∥∥∥∥
Lq

y(Y )

∥∥∥∥∥∥
Lp

x(X)

.p,q ‖f‖Lp(X). (1)

Then Theorem 1 holds for that p and q.

This would be proved by a standard convergence argument akin to the
derivation of the Lebesgue Differentiation Theorem from the Hardy-Littlewood
Maximal Inequality, except that the supremum over Y in the left-hand side
of (1) raises the question of measurability. This is established by an applica-
tion of the Conze principle (Theorem 4.2 in [2]).

It is quickly verified that Hölder’s inequality and the maximal ergodic theo-
rem imply (1) within the duality range 1 ≤ p, q ≤ ∞, 1

p
+ 1

q
≤ 1.

8.2.2 Transfer to a Maximal Inequality on R

By a standard transfer argument, we will reduce (1) to the following maximal
inequality on R:
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Lemma 3. For each 1 < p <∞ and each f ∈ Lp(R),
∥∥∥∥∥ sup
‖g‖

L2(R)=1

∥∥∥∥sup
t>0

1

2t

∫ t

−t
|f(x+ y)g(z + y)|dy

∥∥∥∥
L2

z(R)

∥∥∥∥∥
Lp

x(R)

. ‖f‖Lp(R). (2)

By considering step functions, (2) directly implies an analogous inequality
on Z: for each finitely supported φ : Z → R+,

∥∥∥∥∥∥∥∥
sup

ψ : Z → R+

‖ψ‖ℓ2(Z) = 1

∥∥∥∥∥sup
N

1

N

N∑

b=1

φ(a+ b)ψ(c + b)

∥∥∥∥∥
ℓ2c(Z)

∥∥∥∥∥∥∥∥
ℓpa(Z)

. ‖φ‖ℓp(Z). (3)

Now let X and Y be two dynamical systems, where we assume Y is ergodic.
(This is no restriction: the Conze principle implies that we can replace the
supremum over Y in (1) with any single nonatomic ergodic Y.) Take positive
functions f ∈ Lp(X), g ∈ Lq(Y ), and fix x ∈ X, y ∈ Y . If we fix a sufficiently
large K > 0 and define φ, ψ : Z → Z by

φ(n) :=

{
f(τnx) 0 ≤ n ≤ K

0 otherwise
ψ(n) :=

{
g(σny) 0 ≤ n ≤ K

0 otherwise,

then applying (3) to these functions and integrating over y and x proves (1).

8.2.3 Toward the Model Operator

Finally, we will find it useful to deal with smooth kernels rather than charac-
teristic functions of intervals. Thus for f ∈ L∞(R) and a kernel K ∈ L2(R)
with K ≥ 0, K(0) > 0 and supp K̂ ⊆ [−1, 1], we define

Rf(x) := sup
‖g‖

L2(R)=1

∥∥∥∥sup
k∈Z

2−k|
∫
f(x+ y)g(z + y)K(y2−k)dy|

∥∥∥∥
L2

z(R)

.

Since K is C∞, it majorizes some multiple of a characteristic function 1[−t,t].
Therefore the inequality ‖Rf‖Lp(R) .p ‖f‖Lp(R) for all p > 1 will immediately
imply (2) and thus the Return Times Theorem for all p > 1, q ≥ 2.

Hölder’s inequality and the L2 boundedness of the Hardy-Littlewood max-
imal operator prove that ‖Rf‖L2(R) .p ‖f‖L2(R), so by the Marcinkiewicz
Interpolation Theorem we will only need a restricted weak type inequality in
L1. Therefore the main result of [2] reduces to the following theorem:
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Theorem 4. Let K ∈ L2(R) with K ≥ 0, K(0) > 0 and supp K̂ ⊆ [−1, 1].
Then for all 1 < p <∞, all F ⊂ R with |F | <∞, and all λ ≤ 1,

m{x : R1F (x) > λ} .p
|F |
λ
. (4)

8.3 Discretization of R1F

8.3.1 Decomposition and Restatement as Multiplier Norm

We will decompose R1F by a Gabor basis expansion. We take a Schwartz
function ϕ such that supp ϕ̂ ⊆ [0, 1] and

∑

l∈Z

|ϕ̂(ξ − l

2
)|2 ≡ C,

and then define

ϕk,m,l(x) := 2−
k
2ϕ(2−kx−m)e2πi2

−kxl.

By considering the inversion formula for Fourier series (which applies since

supp ϕ̂0,m,l ⊆ [−l, 1 − l]), we see that
∑

m∈Z

〈f̂ , ϕ̂0,m, l
2
〉ϕ̂0,m, l

2
≡ C ′f̂ |ϕ̂0,0, l

2
|2 for

each f ∈ L2 and l ∈ Z, which further implies (by dilation invariance in k)
that ∑

m,l∈Z

〈f, ϕk,m, l
2
〉ϕk,m, l

2
≡ C ′′f ∀f ∈ L2.

We will choose C so that C ′′ = 1. Using this expansion and the Fourier
transform, R1F can be expressed as a multiplier norm; for a sequence of
functions mk(θ) : R → R we define

‖(mk(θ))k∈Z‖M∗
q,θ

(R) := sup
‖h‖q=1

∥∥∥∥sup
k

|
∫
mk(θ)ĥ(θ)e

2πiθxdθ|
∥∥∥∥
Lq

x(R)

and rewrite

R1F (x) =

∥∥∥∥∥∥

(∑

m,l∈Z

〈1F , ϕk,m,l/2〉φk,m,l/2(x, θ)
)

k∈Z

∥∥∥∥∥∥
M∗

2,θ(R)
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where

φk,m,l/2(x, θ) := F [ϕk,m,l/2(x+ ·)2−kK(· 2−k)](θ).
Note that |φk,m,l/2(x, θ)| ≤ ‖ϕk,m,l/2(x + ·)2−kK(· 2−k)‖L1(R), and therefore
φk,m,l/2(x, θ) ≤ Ckϕk,m,l/2(x) for x large; also,

suppθ φk,m,l/2(x, θ) ⊆ supp (ϕ̂k,m,l/2 ∗ K̂(· 2k))
⊆ [l2−k, (l + 1)2−k] + [−2−k, 2−k].

Similarly, the Fourier transform Fx[φk,m,l/2(x, θ)](ξ) = ϕ̂(ξ)K̂(2k(θ − ξ)) has
support contained in [l2−k, (l + 1)2−k]. These localization properties will
be essential to the argument, as our model operator will act on functions
supported in time and frequency on these shifted dyadic ‘tiles’. We also
make use of elementary regularity properties of φk,m,l/2 and ϕk,m,l/2(x), as
shown in the next section.

8.3.2 Tiles

The final stage in the reduction of this problem is the introduction of tiles
in ‘time’ and ‘frequency’ variables. We define the collection Suniv of all tiles
s = Is × ωs ⊂ R2 with area 1, where Is and ωs are dyadic intervals; we refer
to these as the time and frequency components of s, respectively.

We define a collection of tiles S ⊆ Suniv to be convex if s, s′′ ∈ S implies
that s′ ∈ S for every s′ ∈ Suniv with Is ⊆ Is′ ⊆ Is′′ and ωs′′ ⊆ ωs′ ⊆ ωs. We
may now state the theorem in time-frequency analysis to which the improved
Return Times Theorem of [2] reduces:

Theorem 5. Let S be a convex finite collection of tiles. Say that we have
sets of Schwartz functions {φs : s ∈ S} and {ϕs : s ∈ S} such that

suppθ φs(x, θ) ⊆ ωs ∀x (5)

suppξ Fx(φs(x, θ))(ξ) ⊆ ωs ∀θ (6)

sup
c∈ωs

∥∥∥∥
∂n

∂θn
∂m

∂xm
[φs(x, θ)e

−2πicx]

∥∥∥∥
L∞

θ
(R)

.n,m,M |Is|n−m−1/2χMIs (x) (7)

for all n,m,M ≥ 0, uniformly in s; and such that

supp ϕ̂s ⊆ ωs (8)

sup
c∈ωs

∣∣∣∣
∂n

∂xn
[ϕs(x)e

−2πicx]

∥∥∥∥ .n,M |Is|−n−1/2χMIs (x) (9)
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uniformly in s. Then for each measurable F ⊂ R with |F | < ∞ and each
0 < λ ≤ 1,

m




x :

∥∥∥∥∥∥


 ∑

s∈S:|Is|=2k

〈1F , ϕs〉φs(x, θ)



k∈Z

∥∥∥∥∥∥
M∗

2,θ(R)

> λ





.
|F |
λ

(10)

with the implicit constant depending only on the constants in (7) and (9).

At this point, the reader is directed to M. Bateman’s summary of the
second part of [2], for an outline of the proof of this theorem.

The author is indebted to C. Demeter for valuable recommendations on the
organization of the summary and presentation, and in particular for passing
along a copy of [3].
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9 Sum rules and spectral measures of

Schrödinger operators with L2 potentials

after Rowan Killip and Barry Simon [1]
A summary written by Helge Krüger

Abstract

We prove the L2 estimate for the Hilbert transform on Lipschitz
vector fields in the plane, assuming the conjectured estimate for the
Lipschitz Kakeya maximal function, presented in the first part of this
exposition.

9.1 Some Notation

In order to set notation, we let R+ = [0,∞) be the half line. We denote by
H2(R+) the Sobolev space of twice (weakly) differentiable functions. We say
that V ∈ L2

loc(R
+) if for every a > 0,

∫ a

0

|V (x)|2dx <∞.

We introduce a domain by

D(H) = {f ∈ H2(R+) : f(0) = 0}. (1)

Since, the embedding H2(R+) → L∞(R+) is continuous, we have that V f ∈
L2(R+) for f ∈ D(H)17 and V ∈ L2

loc(R
+). Assume furthermore that V

is real-valued. Hence, we can define an operator H with domain D(H) ⊆
L2(R+) by

H = − d2

dx2
+ V. (2)

We say that V is limit-point at ∞ if H defines a self-adjoint operator, and
we will assume from now on that V is limit-point. Furthermore note that V
is commonly known as the potential.

Next, since H is self-adjoint, we can define its spectrum by

σ(H) = {z ∈ C : (H − z)−1 is not a bounded operator}18, (3)

17Here, we used V ∈ L2
loc(R

+). The assumption V ∈ L1
loc(R

+) would be sufficient to
define H , however then one has to work with quadratic forms (see Reed–Simon).

18As an operator L2(R+) → L2(R+)
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from self-adjointness we know that σ(H) ⊆ R. Furthermore, if V ∈ L2(R+)
one can show that the operator

V (− d2

dx2
+ i)−1

is compact. This is commonly known as V is relatively compact.

Lemma 1. If V ∈ L2(R+), then there are Ej (possibly 0) such that limj→∞Ej =
0 (if there are infinitely many), such that

σ(H) = [0,∞) ∪ {Ej}. (4)

Proof. Follows from the above compactness and σ(− d2

dx2 ) = [0,∞).

We call the Ej the eigenvalues and [0,∞) the essential spectrum.

9.2 The spectral measure

Since σ(H) ⊆ R, we may find for z ∈ C\R a solution ψ of −ψ′′ + V ψ = zψ,
ψ ∈ L2(R+), and ψ(0) = 1.19 Given this solution, we introduce the m-
function by

m(z) = ψ′(0). (5)

Next, one can show that for Im(z) > 0, one also has that Im(m(z)) > 0.
Hence, m is a Herglotz function. This implies that there exists a measure ρ
called the spectral measure, such that

∫
dρ(E)

1 + E2
<∞ (6)

and

m(z) =

∫ (
1

E − z
− E

1 + E2

)
dρ(E) + Re(m(i)). (7)

Furthermore, the boundary values

m(E + i0) = lim
ε↓0

m(E + iε) (8)

exist for almost every E ∈ R. The importance of the spectral measure comes
from the following two facts.

19If ψ(0) = 0, then ψ ∈ D(H), so z is an eigenvalue, which is a contradiction. So we
must have ψ(0) 6= 0, and we can achieve ψ(0) = 1 by multiplication by a constant.
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Theorem 2 (Spectral Theorem20). H on L2(R+) is unitarily equivalent to
multiplication by λ in L2(R, ρ).

Furthermore, we have that

Theorem 3 (Borg–Marchenko). The map from the limit-point V ∈ L2
loc(R

+)
to their spectral measure ρ is injective.

One of the main concerns of spectral theory is to understand the spectral
measures ρ. Consider the Lebesgue decomposition

ρ = ρac + ρsc + ρpp (9)

a natural question is which of these parts arise?21 A partial answer is, that
if V ∈ L2

loc(R
+) ∩ L1(R+) then ρ = ρac + ρpp with supp(ρpp) ⊆ (−∞, 0] (this

follows from the theory of trace class scattering22).
So what happens if V ∈ L2(R+)? The Wigner–von Neumann exam-

ple23 with

V (x) =
sin(6x)

x
(1 + o(1)),

which has an embedded eigenvalue shows that this situation has to be more
complicated.

9.3 The Killip–Simon Theorem

Since in the case V = 0, the solution ψ(z, x) = e−i
√
zx, it turns out useful

instead of working in z coordinate to work in k coordinates, where

z = k2.

We define
w(k) = m(k2). (10)

We furthermore define ρ0(E) by

dρ0(E) =
1

π
χ[0,∞)(E)

√
EdE, (11)

20Think of this as the analog to matrix diagonalization.
21See the paper by Denisov and Kiselev in Simon’s birthday Festschrift.
22See Reed–Simon III. In fact then the pure point part corresponds to the eigenvalues

{Ej}
23This can be found in Reed–Simon IV in Section XIII.13.
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which corresponds to the ρ in the case V = 0. We introduce a measure ν on
(1,∞) by

2

π

∫
f(k2)kdν(k) =

∫
f(E)(dρ(E) − dρ0(E)), (12)

where E = k2. We note that

dν

dk
= Im(w(k + i0)) − k (13)

for almost every k ∈ (1,∞). We furthermore, define a function

F (q) =
1√
π

∫ ∞

1

e−(q−p)2

p
dν(p). (14)

Theorem 4. A positive measure ρ on R is the spectral measure associated
to V ∈ L2(R+) if and only if

1. (Weyl) supp(ρ) = [0,∞) ∪ {Ej}.

2. (Local Solubility) ∫ ∞

0

|F (q)|2dq <∞. (15)

3. (Lieb–Thirring)24
∑

j

|Ej|3/2 <∞. (16)

4. (Strong Quasi–Szegő)25

∫
log

( |w(k + i0) + k|2
4kIm(w(k + i0))

)
k2dk <∞. (17)

The meaning of the conditions (i) to (iv) is as follows.

1. guaranties the right support.

2. implies that V ∈ L2
loc.

24Lieb and Thirring derived inequalities of this form in their proof of the stability of
matter.

25Szegő showed that a similar condition is equivalent to the Verblunsky coefficients being
in ℓ2 in the case of orthogonal polynomials on the unit circle.
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(iii, iv) imply that V ∈ L2 assuming V ∈ L2
loc, since under this assumption the

sum rule

1

8

∫ ∞

0

V (x)2dx =
2

3

∑

j

(E0
j )

3/2 +
1

π

∫
log

( |w(k + i0) + k|2
4kIm(w(k + i0))

)
k2dk

(18)
holds, where E0

j are the eigenvalues of the operator L0, which is the
extension of H to an operator on L2(R). From general results, one has
that ∑

j

(E0
j )

3/2 ≈
∑

j

|Ej |3/2. (19)

In the following, we will try to prove this part.

These conditions are unsatisfactory in order to understand what spectral
measures ρ can arise, since the function F is a complicated object. In order to
correct this, introduce the short-range part of the Hardy–Littlewood maximal
function of ν by

Msν(x) = sup
0<L≤1

1

2L
|ν|([x− L, x+ L]). (20)

Then one can show that the previous theorem is equivalent to

Theorem 5. A positive measure ρ on R is the spectral measure associated
to V ∈ L2(R+) if and only if

1. (Weyl) supp(ρ) = [0,∞) ∪ {Ej}.

2. (Normalization)26

∫
log

(
1 +

(
Msν(k)

k

)2
)
k2dk <∞. (21)

3. (Lieb–Thirring) ∑

j

|Ej|3/2 <∞. (22)

26In analogy to the paper of Killip and Simon on the discrete case [3]. There the
condition is just ρ(R) = 1!
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4. (Quasi–Szegő)

∫
log

(
1

4

dρ

dρ0

+
1

2
+

1

4

dρ0

dρ

)√
EdE <∞. (23)

This theorem shows in particular, that if V ∈ L2(R+), then ρac is sup-
ported on R+ (so as the free operator), which is a result by Deift and Killip
[1]. Furthermore, one sees that the only obstruction to constructing measures
with a singular part is the normalization condition (ii).

9.4 A historical note

Killip and Simon have first proven their theorem in the case of Jacobi opera-
tors, which are discrete operators acting ℓ2(Z+) → ℓ2(Z+). This is somewhat
easier, since one only has to worry about the condition ’V ∈ L2’ and not
about being locally in L2. See [3] for details.
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10 The bilinear Hilbert transform along a parabola

after X. Li [3]
A summary written by Victor Lie

Abstract

We summarize the proof in [3] of the L2 ×L2 → L1 - boundedness
of the bilinear Hilbert transform along a parabola.

10.1 Introduction

The paper that we intend to present here treats the problem of providing
bounds for the bilinear Hilbert transform along a parabola27 - denoted in
what follows with HP .

Let us start by presenting the definition of HP .

HP : S(R) × S(R) 7−→ S ′(R)

HP(f, g)(x) := p.v.

∫

R

f(x− t)g(x− t2)
dt

t
.

The main result of the paper is given by

Main Theorem.28 The bilinear Hilbert transform along the parabola, HP ,
is a bounded operator from L2(R) × L2(R) to L1(R).

10.2 The analysis of the multiplier

If viewed in a multiplier setting, we have:

HP(f, g)(x) := p.v.

∫

R

∫

R

f̂(ξ)ĝ(η)m(ξ, η)eiξxeiηxdξdη .

where

m(ξ, η) =

∫

R

e−iξt e−iηt
2 dt

t
.

27The parabola here can actually be replaced by any curve γ of the form γ(t) = (t, td)
for 2 ≤ d ∈ N.

28One can extend this theorem to obtain boundedness in the general local L2 case.
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Our goal in this section is to make a careful analysis of the symbol m;
we will use a different decomposition from that appearing in [3] which seems
more natural, but the most relevant pieces will be treated following Li.

As usual we start by decomposing the kernel 1
t

as follows:

1

t
=
∑

j∈Z

ρj(t) ∀ t ∈ R∗ ,

where ρ is an odd C∞ function with supp ρ ⊆
{
t ∈ R | 1

4
< |t| < 1

}
and

ρj(t) := 2jρ(2jt) (with j ∈ Z).
Consequently,

m(ξ, η) =
∑

j∈Z

mj(ξ, η)

with

mj(ξ, η) =

∫

R

e−iξt e−iηt
2

ρj(t)dt .

Using Parseval, we notice that our symbol mj obeys the following key
identity:29

∫

R

e−i
ξ

2j t e−i
η

22j t
2

ρ(t) dt =
2j√
|η|

ei
ξ2

4η

∫

R

ei
22j

η
u2

ei u
2jξ
2η ρ̂(u) du . (1)

Relation (1) suggests the further analysis of the symbol mj relative to the
size of the terms ξ

2j and η
22j . For this we are invited to split mj as follows.

Let ν0, ν1, ν2 be (even) positive smooth functions satisfying: ν0 ∈ C∞
0 (R)

with supp ν0 ⊂ (−9/10, 9/10), ν1 ∈ C∞
0 (R) with supp ν1 ⊂ {x | 1

2
< |x| < 2},

ν2 ∈ C∞(R) with supp ν2 ⊂ {x | |x| > 3/2} and such that

ν0 + ν1 + ν2 = 1 .

Now set νj,k(x) := νk(2
−jx) with k ∈ {0, 1, 2}.

Then, each component mj of the multiplier m is expressed as:

mj =
2∑

k,l=0

mkl
j

where
mkl
j (ξ, η) := mj(ξ, η) νj,k(ξ) ν2j,l(η) .

29Here we ignore the constants.
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This last relation can be written in a more explicit form:

mkl
j (ξ, η) =

(∫

R

e−i
ξ

2j t e−i
η

22j t
2

ρ(t) dt

)
νk(

ξ

2j
) νl(

η

22j
) . (2)

Now using (1), the mean zero property of the function ρ, and Taylor
expansions, one can easily show that all the symbols mkl

j excepting m22
j can

be essentially reduced30 to the study of the symbols having the form

uj(ξ, η) := ψ(
ξ

2j
)ϕ(

η

22j
) ,

where ψ, η are smooth compactly supported functions and at least one of
them has mean zero.

Now taking u =
∑

j uj and defining

V(f, g)(x) := p.v.

∫

R

∫

R

f̂(ξ)ĝ(η)u(ξ, η)eiξxeiηxdξdη ,

one may apply the classical paraproduct theory31 to conclude:

Theorem 1. For any 1
p

+ 1
q

= 1
r

with p, q > 1 and r > 1
2

we have

‖V(f, g)‖r .p,q,r ‖f‖p ‖g‖q .

Thus, Theorem 1 reasonably easily dispenses with our concerns relative
to the boundedness properties of the (multilinear) operators given by the
symbols

mkl(ξ, η) :=
∑

j

mkl
j (ξ, η) ,

where as mentioned before k, l ∈ {0, 1, 2} but k, l are not simultaneously
equal to 2.

Now we turn our attention towards the last component in our decompo-
sition of mj , namely m22

j . Using again the “duality formula” (1) we remark
that

m22
j (ξ, η) =

2j√
|η|

ei
ξ2

4η ρ(
2jξ

2η
)

(
1 − ν2(

ξ

2j
)

) (
1 − ν2(

η

22j
)
)

+Error term (3)

30As linear combinations of uj ’s with l1-summable coefficients.
31As the reader may note, to establish the Main Theorem one only needs the conclusion

of Theorem 1 for p = q = 2. In the general local L2 setting, one may need uniform
paraproduct estimates; see [4].

70



where the error term is given by32

(
2j√
|η|

)3

ei
ξ2

4η ρ̃(
2jξ

2η
)

(
1 − ν2(

ξ

2j
)

) (
1 − ν2(

η

22j
)
)
. (4)

This error term can be easily treated due to the extra decay offered by the
cubic expression in (4).

We let vj(ξ, η) be the main term in (3). Set φ a smooth compactly
supported function with supp φ ⊂ {x | 1

10
< |x| < 10}. Then, we rewrite33

the main term vj as

vj(ξ, η) =
∑

m≥0

1

2m/2
ei

ξ2

4η φ(
ξ

2m+j
)φ(

η

2m+2j
) =

∑

m≥0

vj,m(ξ, η) . (5)

Now we define our essential pieces as

Tj,m(f, g)(x) :=

∫

R

∫

R

f̂(ξ)ĝ(η)vj,m(ξ, η)eiξxeiηxdξdη . (6)

It remains now to show (and this constitutes the most difficult part of our
result) that the operators Tj,m obey the condition

∥∥∥∥∥
∑

j∈Z,m≥0

Tj,m(f, g)

∥∥∥∥∥
1

. ‖f‖2 ‖g‖2 . (7)

The methods for proving (7) will be described in the next section.

10.3 The proof - key argument

¿From the above description our main theorem is reduced to the task of
obtaining good bounds for each operator Tj,m. This aim is attained through
the following:

Theorem 2. There exists ǫ ∈ (0, 1) such that

‖Tj,m(f, g)‖1 . max{2−ǫm, 2−ǫ|m−|j||} ‖f‖2 ‖g‖2 . (8)

32Here ρ̃ is a smooth function (but not compactly supported) “mostly” concentrated in
the interval [−1, 1].

33Here we use the good localization of ρ, i.e. supp ρ ⊆
{
t ∈ R | 1

4
< |t| < 1

}
.
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The proof of Theorem 2 is realized in two steps. The first step consists of
proving the estimate (8) for the case |j| < m. In this situation, one uses the
standard TT ∗- method; the summarized result is contained in the following

Proposition 3. For |j| < m we have that

‖Tj,m(f, g)‖1 . 2
|j|−m

8 ‖f‖2 ‖g‖2 . (9)

The second step brings the true “caviar” of the proof. Indeed in closing
the estimate for the case |j| ≥ m, Li had the nice idea of making use of
the σ−uniformity concept described below. While this uniformity concept is
not original, appearing in various forms in fields such as ergodic theory and
additive combinatorics (see e.g. [2]), its appearance in our context is rather
surprising. (For the sake of truth though, one must say that this concept
was previously used in a related setting in the paper [1].)

Let us now describe this concept as it is used in our context.
Set σ ∈ (0, 1] and let Q be a family of real-valued measurable functions.

Also set I a bounded interval.
Definition. A function f ∈ L2(I) is σ−uniform in Q if

∣∣∣∣
∫

I

f(ξ) e−i q(ξ) dξ

∣∣∣∣ ≤ σ‖f‖L2(I)

for all q ∈ Q.

Lemma 4. Let L be a bounded sub-linear functional from L2(I) to C, and
let Sσ be the collection of all functions that are σ−uniform in Q. Set

Uσ = sup
f∈Sσ

|L(f)|
‖f‖L2(I)

& Q = sup
q∈Q

|L(ei q)| .

Then for all functions in L2(I) we have

|L(f)| ≤ max{Uσ, 2σ−1Q}‖f‖L2(I) . (10)

The moral of the σ−uniformity concept introduced above and the way in
which it is used in Lemma 4 can be described as follows: given a function f ,
then either the “q-Fourier” coefficients are uniformly small (so morally f is
orthogonal to the family eiQ := {eiq}q∈Q) or f must resemble a singleton of
the form ei q for some q ∈ Q. Thus to control the size of L it is enough to
know the behavior of L on the classes: Sσ and eiQ.

Once we have defined this concept, using the lemma above one proves the
second step needed for our theorem:
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Proposition 5. Let |j| ≥ m. Then we have that

‖Tj,m(f, g)‖1 . max{2−m
10 , 2

m−|j|
2 } ‖f‖2 ‖g‖2 . (11)

As expected, this last proposition borrows from the structure described in
Lemma 4: firstly, one needs to identify the form of the family Q and to obtain
good estimates for the L1-norm of Tj,m(f, g) when one of the functions f̂ and
ĝ is σ-uniform with respect to Q; secondly, one must control the expressions
like Tj,m(ěiq, g) (or Tj,m(f, ěiq)) when q ∈ Q.

Finally, we give a short description of the steps followed for proving Propo-
sition 5.

First we notice that it is enough to prove our result in the case j ≥ m,
(the other case −j ≥ m has a similar treatment). Next, one makes use of
the scaling symmetry and “moves” the problem inside of the unit interval;
more exactly, one defines the operator

Bj,m(f(·), g(·))(x) := 2−
j
2 Tj,m

(
f(2m+j ·), g(2m+2j·)

)
(

x

22j+m
) ,

and notices that relation (11) is equivalent to

‖Bj,m(f, g)‖1 . max{2− m
10 , 2

m−|j|
2 } ‖f‖2 ‖g‖2 . (12)

The advantage in working with Bj,m instead of Tj,m is that now all the infor-
mation of the multiplier is translated inside of the unit34 cube, as can easily
be observed from the following formula:

Bj,m(f, g) = 2−
m+j

2

∫

R

∫

R

f̂(ξ) ĝ(η) ei(2
−jξ+η) x ei

ξ2

4η
2m

φ(ξ)φ(η) dξ dη . (13)

Next one defines the trilinear form associated to Bj,m and given by

Λj,m(f, g, h) :=

∫

R

Bj,m(f, g)(x) h(x) dx .

Now, given the form of (13) and our plans of attacking the proof along the
lines of Lemma 4, we define the family Q as being

Q := {aξ2 + bξ | 2m−100 ≤ | a| ≤ 2m+100 & b ∈ R} . (14)

With this done, we are now ready to state the two lemmas on which the
proof of (12) is based.

34This is verbatim true if we think at the support of φ as being placed inside {x | 1

2
<

|x| < 1} instead of {x | 1

10
< |x| < 10}.
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Lemma 6. Let f̂φ ∈ L2([0, 1]) be σ−uniform in Q. Then

|Λj,m(f, g, h)| . max{2−m, 2m−j, σ}‖f‖2‖g‖2‖h‖∞ . (15)

Lemma 7. Let q ∈ Q. Then

|Λj,m( ˇ(eiqφ), g, h)| . 2−
m
5 ‖g‖2‖h‖∞ . (16)

The proof of Lemma 6 involves the mean value theorem, interpolation
techniques and the use of the σ−uniformity. Lemma 7 uses a variant of
van der Corput exploiting the highly oscillatory behavior of the multiplier in
Λj,m( ˇ(eiqφ), g, h).

This being said, we apply Lemma 4 to the function f̂φ and the functional
L(f) = (Lg,h(f)) = Λj,m(f, g, h), and exploit the statements of Lemma 6 and
7. Then we have

|Λj,m(f, g, h)| . max{max{2−m, 2m−j, σ}, 2σ−12−
m
5 }‖f‖2‖g‖2‖h‖∞ .

Now, by properly choosing σ we obtain (12), thus ending the proof of Propo-
sition 5.
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11 The Brascamp-Lieb inequalities: finiteness,

structure and extremals

after J. Bennett, A. Carbery, M. Christ, and T. Tao [1]
A summary written by Kabe Moen

Abstract

Fundamental inequalities in analysis such as Hölder’s, Young’s, and
the Loomis-Whitney inequalities naturally fall into the more general
framework of the Brascamp-Lieb inequalities. We summarize some
of the results in [1]. Heat flow methods adapted to the multilinear
setting are used to give a new proof of the geometric Brascamp-Lieb
inequality. We also address issues such as the finiteness of the con-
stant, extremals, and a gaussian extremals.

11.1 Introduction

Let m ≥ 1, (B1, . . . , Bm) be an m-tuple of surjective linear transformations
with each Bj : Rn → Rnj , and (p1, . . . , pm) be an m-tuple of exponents, with
each pj ∈ [0,∞). The Brascamp-Lieb inequalities arise when considering
conditions for which

sup
f1,...,fm

∫
Rn

∏m
j=1(fj ◦Bj)

pj dx
∏m

j=1

(∫
Rnj fj dx

)pj
<∞, (1)

where the supremum is over all nonnegative measurable functions fj : Rnj →
[0,+∞) with 0 <

∫
Rnj fj dx <∞.

Example 1 (Hölder’s Inequality). If n = nj, Bj = Id, p1 + · · · pm = 1, then
(1) is essentially a restatement of Hölder’s inequality.

Example 2 (Young’s convolution inequality). If n = 2d, Bj : R2d → Rd,
for j = 1, 2, 3 are given by B1(x, y) = y, B2(x, y) = x − y, B3(x, y) = x, and
p1 + p2 + p3 = 2, then (1) is a reformulation Young’s convolution inequality.

Example 3 (Loomis-Whitney inequality). Suppose n = m, nj = n − 1
for each 1 ≤ j ≤ n, Bj are the orthogonal projections Bj(x1, . . . , xn) =
(x1, . . . , xj−1, xj+1, . . . , xn) and pj = 1/(n− 1). In this case (1) can be inter-
preted as the Loomis-Whitney inequality.
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11.2 Notation and preliminaries

11.2.1 Definitions

In order to take advantage of invariance of isometries, restrictions, and or-
thogonal subspaces of Hilbert space, we work on finite dimensional real
Hilbert spaces, usually denoted by H,Hj , etc. For an integer m ≥ 1, we
define an m-transformation to be

B = (H, (Hj)1≤j≤m, (Bj)1≤j≤m)

where for each 1 ≤ j ≤ m, Bj : H → Hj. We say that an m-transformation
is non-degenerate if BjH = Hj and

⋂m
j=1 kerBj = {0}. An m-exponent,

denoted p, is an m-tuple of exponents p1, . . . , pm ∈ [0,∞]. We define a
Brascamp-Lieb datum to be a pair (B,p) where B is an m-transformation
and p is an m-exponent. If (B,p) is a Brascamp-Lieb datum, an input,
denoted f , for (B,p) is m-tuple of functions fj : Hj → [0,∞) such that
0 <

∫
Hj
fj dx <∞.

Definition 4 (Brascamp-Lieb constant). Define the quantity 0 ≤ BL(B,p, f) ≤
∞, by the formula

BL(B,p, f) :=

∫
H

∏m
j=1(fj ◦Bj)

pj dx
∏m

j=1

(∫
Hj
fj dx

)pj
(2)

and define the Brascamp-Lieb constant

BL(B,p) := sup BL(B,p, f) (3)

where the supremum is over all inputs f.

Of course one can define the Brascamp-Lieb constant by (3) when (B,p)
is degenerate, however in this case BL(B,p) = ∞. Thus, we shall restrict
to non-degenerate data. One of the fundamental inputs are gaussian inputs.
More specifically, given any positive definite linear transformation A : H →
H one has the well known formula

∫

H

exp(−π〈Ax, x〉) dx = (detA)−1/2. (4)

Given a Brascamp-Lieb datum (B,p) we define a gaussian input to be an
m-tuple A = (Aj)1≤j≤m of positive definite linear transformations Aj : Hj →
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Hj. Plugging the datum (exp(−π〈Ajx, x〉))1≤j≤m into (2) and using formula
(4) we define 0 < BLg(B,p,A) <∞ by

BLg(B,p,A) := BL(B,p, (exp(−π〈Ajx, x〉))1≤j≤m)

=




∏m
j=1(detHj

Aj)
pj

detH

(∑m
j=1 pjB

∗
jAjBj

)




1/2

(5)

Definition 5 (Gaussian Brascamp-Lieb constant). Let (B,p) be a Brascamp-
Lieb datum, then we define the gaussian Brascamp-Lieb constant to be

BLg(B,p) := sup BLg(B,p,A)

where the supremum is over all gaussian inputs A.

Clearly, we have
BLg(B,p) ≤ BL(B,p).

However, as Lieb [3] showed we actually have equality (see Theorem 11 be-
low). For the Brascamp-Lieb constants one issue is determining when they
are finite, another issue is determining when there are extremisers.

Definition 6 (Extremisability). A Brascamp-Lieb datum is said to extrem-
isable if BL(B,p) is finite and there exists an input f for which BL(B,p) =
BL(B,p, f). The datum (B,p) is said to be gaussian-extremisable if there
exists a gaussian input A for which BLg(B,p) = BLg(B,p,A).

Finally, we introduce a special Brascamp-Lieb datum which plays an im-
portant role in determining general Brascamp-Lieb constants.

Definition 7 (Geometric Brascamp-Lieb data). A Brascamp-Lieb datum
(B,p) is said to be geometric if H1, . . . , Hm are subspaces of H, Bj : H → Hj

are orthogonal projections, and

m∑

j=1

pjB
∗
jBj = IdH . (6)

First, notice that geometric Brascamp-Lieb datum are always non-degenrate.
Also notice that the geometric Brascamp-Lieb inequality generalizes Exam-
ples 1 and 3 significantly.
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11.2.2 Main results

In this section we provide the main results that address some of the issues
concerning Brascamp-Lieb constants. Specifically, given a Brascamp-Lieb
datum, (B,p), when is its Brascamp-Lieb constant finite? When does it
have extremisers? When does it have gaussian extremisers? We first start
with the geometric case of the Brascamp-Lieb constants. This case lays the
foundation for heat flow techniques and leads to more general Brascamp-Lieb
inequalities.

Theorem 8. Let (B,p) be a geometric Brascamp-Lieb datum. Then

BL(B,p) = BLg(B,p) = 1

and (B,p) is gaussian-extremisable (hence also extremisable).

Once we have established Theorem 8 we may use it to characterize gaus-
sian extremisers.

Definition 9. Two m-transformations B = (H, (Hj)1≤j≤m, (Bj)1≤j≤m) and
B′ = (H ′, (H ′

j)1≤j≤m, (B′
j)1≤j≤m) are said to be equivalent if there exist in-

vertible linear transformations C : H ′ → H, and Cj : H ′
j → Hj such that

B′
j = C−1

j BjC for all j; we refer to C and Cj as intertwining transforma-
tions.

We call two Brascamp-Lieb data (B,p) and (B′,p′) equivalent if B and
B′ are equivalent and p = p′. Using a change of variables we have the
following relationship between Brascamp-Lieb constant for equivalent data

BL(B′,p′) =

∏m
j=1 | detCj |pj

| detC| BL(B,p)

and similar with gaussian Brascamp-Lieb constants.

Theorem 10. Let (B,p) be a Brascamp-Lieb datum and A a gaussian input
for (B,p). Let M : H → H be the positive semi-definite transformation
M :=

∑m
j=1 pjB

∗
jAjBj. Then A is a gaussian extremiser for (B,p) if and

only if (B,p) is equivalent to a geometric Brascamp-Lieb data (B′,p′) with

intertwining maps C = M−1/2 and Cj = A
−1/2
j , and

BL(B,p) = BLg(B,p)
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In determining if a Brascamp-Lieb constant is finite one of the tools is
the following theorem by Lieb [3].

Theorem 11. Let (B,p) be a Brascamp-Lieb datum, then BL(B,p) =
BLg(B,p).

Thus, in order to understand a Brascamp-Lieb constant, we may reduce
the task to understanding the gaussian Brascamp-Lieb constant. However,
Theorem 11 does not resolve everything. For instance, it does clarify when
conditions exist for either BL(B,p) or BLg(B,p) to be finite. Also, this
theorem does not answer the question of when extremal exist. In order to
address these question we first need a definition which was first introduced
in [2].

Definition 12 (Critical subspace and simplicity). Let (B,p) be a Brascamp-
Lieb datum. A critical subspace V for (B,p) is a non-zero proper subspace
of H such that

dim(V ) =

m∑

j=1

pj dim(BjV ).

The datum (B,p) is simple if it has no critical subspaces.

Theorem 13. Let (B,p) be a Brascamp-Lieb datum. Then BLg(B,p) is
finite if and only if we have the scaling condition

dim(H) =

m∑

j=1

pj dim(Hj) (7)

and the dimension condition

dim(V ) ≤
m∑

j=1

pj dim(BjV ) for all subspaces V ⊆ H. (8)

Furthermore, if (B,p) is simple, then it is gaussian-extremisable.

By combining Theorems 11 and 13 we have the following corollary.

Corollary 14. Let (B,p) be a Brascamp-Lieb datum. Then the following
three statements are equivalent:

(1) BL(B,p) <∞.
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(2) BLg(B,p) <∞.

(3) (7) and (8) hold.

Furthermore, if any of (1)-(3) hold, and (B,p) is simple, then (B,p) is
gaussian-extremisable.

11.3 Outline of proofs

We briefly outline the proofs for some of the results in the previous section.
We start with a multilinear monotonicity lemma that is crucial to the proof
of Theorem 8. In turn, Theorem 8 leads to the characterization of gaussian-
extremisers given in Theorem 10. Finally, we combine Theorem 10, Theorem
13 and a factorisation method (Lemma 19) to provide a short proof of Lieb’s
Theorem (Theorem 11). We mainly focus on the multilinear heat flow tech-
niques. It is for this reason that we do not provide proofs of many of the
results including Lemmas 15, 19 and Theorems 10, 13. First we give the
linear version from which we will obtain the multilinear version.

Lemma 15. Let I ⊂ R+ be a time interval, H be a Euclidean space, u :
I × H → R+ be smooth function, and ~v : I × H → H be a smooth vector
field, such that u~v is rapidly decreasing at spatial infinity, locally uniform on
I. Suppose that we have the transport inequality

∂tu(t, x) + div (~v(t, x)u(t, x)) ≥ 0 (9)

for all (t, x) ∈ I × H. Then the quantity Q(t) :=
∫
H
u(t, x) dx is non-

decreasing in time.

Lemma 16. Let I ⊆ R+ be a time interval, p1, . . . , pm be positive exponents,
uj : R+ × H → R+ be a smooth functions, and ~vj : R+ × H → be smooth
vector fields. Suppose ~v : R+ × H → H is a smooth vector field such that
~v
∏m

j=1 u
pj

j is rapidly decreasing space locally uniform on I, and the following
inequalities hold:

∂tuj(t, x) + div(~vj(t, x)uj(t, x)) ≥ 0 1 ≤ j ≤ m (10)

div

(
~v −

m∑

j=1

pjvj

)
≥ 0 (11)

m∑

j=1

pj〈~v − ~vj,∇ log uj〉 ≥ 0. (12)
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Then the quantity Q(t) :=
∫
H

∏m
j=1 uj(t, x)

pj dx is non-decreasing in time.

Remark 17. In practice uj will be solutions of the heat equation (where the
name heat flow comes from)

∂tuj(t, x) = ∆uj(t, x). (13)

Notice, in this case we may rewrite the heat equation (13) as the transport
equation

∂tuj + div(~vjuj) = 0 (14)

where ~vj = −∇ log uj. Equation (14) shows that condition (10) is satisfied,
and setting

~v =

m∑

j=1

pj~vj

condition (11) is also satisfied.

We are now ready to prove Theorem 8 using the monotonicity Lemma
(16).

Proof of Theorem 8. Suppose (B,p) is a geometric Brascamp-Lieb datum.
Observe that BLg(B,p) ≥ 1 by testing the gaussian input (IdHj

)1≤j≤m. We
aim to show BL(B,p) ≤ 1, this will imply BLg(B,p) = BL(B,p) = 1 and
(exp(−π‖x‖2

Hj
))1≤j≤m is an extremiser. Assume f is an input with each fj

positive, smooth and rapidly decreasing. Let uj : R+ × H → R+ be the
solution to the heat equation (13) with initial condition uj(0, x) = fj ◦Bj(x).
Because of the orthogonality of Bj , we may write the explicit solution of
(13),

uj(t, x) =
1

(4πt)dim(Hj)/2

∫

Hj

e
−‖Bjx−y‖2

Hj
/4t
fj(y) dy.

As noted in Remark 17, setting ~vj = −∇ log uj and ~v =
∑m

j=1 pj~vj implies
conditions (10) and (11) of Lemma 16 are satisfied. It is a technical condi-
tion to verify ~v

∏
j u

pj

j is rapidly decreasing and that condition (12) is satis-

fied. Thus, Q(t) =
∫
H

∏m
j=1 uj(t, x)

pj dx is non-decreasing, so in particular
lim supt→0+ Q(t) ≤ lim inft→∞Q(t). By Fatou’s lemma we have,

∫

H

m∏

j=1

(fj ◦Bj)
pj dx ≤ lim sup

t→0+

Q(t).
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On the other hand by a change of variables x = t1/2w we have

lim inf
t→∞

Q(t) =

m∏

j=1

(∫

Hj

fj dy

)pj

.

We now give a short proof of Theorem 11. First we give a definition and
a lemma.

Definition 18. Let B = (H, (Hj)1≤j≤m, (Bj)1≤j≤m) be an m-transformation
and V a subspace of H. We define the restriction BV of B to V to be

BV = (H, (BjV )1≤j≤m, (Bj|V )1≤j≤m).

Lemma 19. Suppose (B,p) has a critical subspace V , then

BL(B,p) = BL(BV ,p)BL(BV ⊥ ,p) (15)

and
BLg(B,p) = BLg(BV ,p)BLg(BV ⊥,p). (16)

Proof of Theorem 11. We induct on the dimension of H . When dim(H) = 0
there is nothing to prove. Suppose n > 0 and BLg(B̃, p̃) = BL(B̃, p̃) for any

Brascamp-Lieb datum, (B̃, p̃) with dim(H̃) < n. Let (B,p) be a Brascamp-
Lieb datum with dim(H) = n. We claim that BLg(B,p) = BL(B,p). Since
BLg(B,p) = ∞ implies BL(B,p) = ∞ we may suppose BLg(B,p) < ∞.
First suppose (B,p) is simple, then since BLg(B,p) < ∞ by Theorem 13
the datum is gaussian-extremisable. The claim now follows from Theorem
10. Now suppose (B,p) is not simple, i.e. there is a critical subspace V . We
may use Lemma 19 to split the datum (B,p) into (BV ,p) and (BV ⊥ ,p) with
BLg(B,p) and BL(B,p) factoring accordingly. By the inductive hypothesis
we have

BL(BV ,p) = BLg(BV ,p) and BL(BV ⊥,p) = BLg(BV ⊥,p)

and the claim follows from (15) and (16). Thus closing the induction and
completing the proof.
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12 A variational norm Carleson theorem

After R. Oberlin, A. Seeger, T. Tao, C. Thiele, and J. Wright [9]
A summary written by Richard Oberlin

Abstract

We give a variational-norm version of Carleson’s theorem, and a re-
lated estimate for curves in Lie groups which is pertinent to nonlinear
Schrödinger and Dirac operators.

12.1 Introduction

Given a Schwartz function f on R and real numbers ξ and x, we consider the
partial Fourier-summation operator S[f ](ξ, x) =

∫ ξ
−∞ f̂(ξ′)e2πiξ

′x dξ′ where

f̂ denotes the Fourier transform of f . The Carleson-Hunt theorem [2], [6]
(after restatement) tells us that for 1 < p <∞

‖S[f ]‖Lp
x(L∞

ξ ) ≤ Cp‖f‖Lp. (1)

Once this bound is known, a standard density argument allows one to define
S[f ] for f ∈ Lp as a continuous function in ξ for almost every x; thus defined
the bound extends to Lp.

We are interested in replacing the L∞ norm above by a stronger (at
least in the current context) variational norm. Given a function g on R and
1 ≤ r <∞ let

‖g‖V r = sup
N,ξ0<...<ξN

(
N∑

j=1

|g(ξj) − g(ξj−1)|r
)1/r

.

The main result is:

Theorem 1. Suppose 2 < r <∞ and r′ < p <∞. Then

‖S[f ]‖Lp
x(V r

ξ
) ≤ Cp,r‖f‖Lp. (2)

A restricted-weak-type estimate at p = r′ is also obtained.
The exponents above are sharp in the following sense. By using the fact

that a related variational estimate for dyadic martingales does not hold for
r ≤ 2 [10], together with a square function argument (see Section 12.2), one
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sees that (2) does not hold for r ≤ 2. The condition p > r′ is also necessary;
this can be seen by considering a Schwartz function ψ with ψ̂ = 1 on [−1, 1]
and ψ̂ supported on [−2, 2]. For this example, one may explicitly compute
S[ψ](ξ, x) − S[ψ](−ξ, x) for |ξ| ≤ 1 and analyze the variation.

Before discussing the proof, we give two motivations for considering the
V r norm. First, recall that L∞ bounds such as (1) imply pointwise almost
everywhere convergence once such convergence is known for a dense subclass
of functions (for example, the continuity in ξ of S[f ] for f ∈ Lp which follows
from the same fact for Schwartz f). The stronger V r bounds allow one
to deduce pointwise almost everywhere convergence without any previously
known convergence. This could be useful, say, when transferring estimates
into the setting of ergodic theory, where one may not find a dense subclass
with trivial convergence; see [1]. Second, as we will see, one may deduce
bounds for a certain r-variational length of a curve in a Lie group from the
corresponding length of its “trace”. It had been hoped that this would allow
the deduction of a (variational) bound for the “nonlinear Carleson operator”
from a variational bound for the standard (i.e. linear) Carleson operator.
Unfortunately, this approach does not seem to work, since the correspondence
holds only for r < 2 and the bound for the standard Carleson operator only
holds for r > 2.

12.2 Lacunary version

We first recall a proof of a lacunary version of the Carleson-Hunt theorem

‖ sup
k∈Z

|S[f ](2k, ·)|‖Lp ≤ Cp‖f‖Lp. (3)

Using the boundedness of the Hilbert transform, one sees that the above
bound follows from the even version

‖ sup
k∈Z

|S[f ](2k, ·) − S[f ](−2k, ·)|‖Lp ≤ Cp‖f‖Lp. (4)

Letting ψ be as in the previous subsection and ψk(x) = 2−kψ(2−kx), recall
the standard square function estimate

‖
(∑

k∈Z

|S[f ](2k, ·) − S[f ](−2k, ·) − ψ−k ∗ f |2
)1/2

‖Lp ≤ Cp‖f‖Lp (5)
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where ∗ denotes convolution. Then (4) follows from (5) and the bound

‖ sup
k∈Z

|ψk ∗ f |‖Lp ≤ Cp‖f‖Lp,

which in turn follows from the standard Lp bound for the Hardy-Littlewood
maximal operator M.

Moving to the variational version of (3), we want to bound

‖ sup
N∈N,k0<...<kN∈Z

(
N∑

j=1

|S[f ](2kj , ·) − S[f ](2kj−1 , ·)|r
)1/r

‖Lp ≤ Cp‖f‖Lp. (6)

Using the argument in the previous paragraph (here it is important that
r ≥ 2) one sees that the crucial step is estimating

‖ sup
N∈N,k0<...<kN∈Z

(
N∑

j=1

|ψkj
∗ f − ψkj−1

∗ f |r
)1/r

‖Lp ≤ Cp‖f‖Lp. (7)

The bound above then follows from a known Lp bound for a variational
version of M [7] (or alternatively from a variational estimate for dyadic
martingales). In fact, for the lacunary bound (6), we end up with the range
of exponents 1 < p <∞ instead of p > r′ as in the general bound (2).

12.3 General version

12.3.1 Discretization

After linearizing and dualizing the V r norm, and using a partition of unity
argument to discretize (as in, say, [11]) we reduce the problem (2) to that of
proving bounds for a finite number of model operators each of the form

‖
∑

P∈P

〈f, φP 〉φPaP‖Lp ≤ Cp,r‖f‖Lp. (8)

The sum above is over multitiles P in a finite collection P. A multitile is a
subset I×ω of R2. The time interval I is dyadic, and the frequency set ω is the
union of three intervals ωl, ωu, ωh. We describe the nature of the frequency
intervals for a typical model operator: the intervals ωl, ωu are dyadic half
open intervals of the form [a, b) with ωl = ωu − 2|ωu| and |ωu||I| = 1/2, the
interval ωh is the infinite interval [supωu + |ωu|,∞).
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The functions φP are L2 normalized Schwartz functions adapted to the
multitiles P in the following sense: φ̂P is supported in 11

10
ωu (here we dilate

around the center of ωu), and e−2πic(ωu)xφP (x) is adapted to I, that is

| d
n

dxn
[e−2πic(ωu)·φP ](x)| ≤ C|I|−(1/2+n)(1 + |x− c(I)|/|I|)−N

for some large large N and for n = 0, . . . , N ′ for some large N ′. (above c(ωu)
denotes the center of ωu).

Finally, the functions aP are obtained from the linearization/dualization
process as follows. Fix some large M , real valued functions ξ0, . . . , ξM on
R satisfying ξ0(x) < ξ1(x) < . . . < ξM(x) for every x, and complex-valued

functions a1, . . . , aM on R satisfying
(∑M

j=1 |aj(x)|r
′
)1/r′

≤ 1 for every x.

Then, for each multitile P and x ∈ R there is at most one j with ξj−1 ∈ ωl
and ξj ∈ ωh; if such a j exists, we set aP (x) = aj(x) and otherwise we set
aP (x) = 0. We then want to prove (8) with Cp,r independent of M and the
functions ξ0, . . . , ξM , a1, . . . , aM .

12.3.2 Bound for trees

We first consider a version of (8) with the (basically) arbitrary collection of
multitiles P replaced by a type of collection T called a tree which we now
define.

Let C2 = 2. Given a dyadic interval IT and a frequency ξT ∈ R consider
the interval ωT = (ξT − (C2 − 1)/(4|IT |), ξT + (C2 − 1)/(4|IT |)). If T is a
collection of multitiles satisfying I ⊂ IT and ωT ⊂ ωm for every P ∈ T , where
ωm is the convex hull of C2ωu∪C2ωl, then we say that that (T, IT , ξT ) is a tree.
The tree is said to be l-overlapping if for every P ∈ T we have ξT ∈ C2ωl,
we will say that it is l-lacunary if for every P ∈ T we have ξT /∈ C2ωl. Of
course every tree can be written as the union of an l-overlapping tree and an
l-lacunary tree, each of which have the same top data (ξT , IT ) as the original
tree. This allows us to reduce the proof of

‖
∑

P∈T
〈f, φP 〉φPaP‖Lp ≤ Cp,r‖f‖Lp (9)

where T is a tree, to the cases where T is l-lacunary or l-loverlapping.
If T is l-overlapping, then for each P ∈ T , we have the frequency support

of φP contained in an interval of size ≈ 1/|I| distance ≈ 1/|I| away from ξT .
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This lacunarity of the frequency supports allows us to obtain (9) from (6).
Indeed, for each x, unraveling the definition of aP gives

|
∑

P∈T
〈f, φP 〉φP (x)aP (x)| ≤ (

M∑

k=1

|
∑

P∈T
ξk−1(x)∈ωl

ξk(x)∈ωh

〈f, φP 〉φP (x)|r)1/r.

A geometric argument shows that one may apply (9) to bound the Lp norm
of the right side above by ‖∑P∈T 〈f, φP 〉φP‖Lp, which can be controlled by
‖f‖Lp.

If T is l-lacunary, the situation is a little simpler. A geometric argument
shows that for each x there is at most one j(x) such that there is a P ∈ T
with |I| = 2j(x) and aP (x) 6= 0. This implies that

|
∑

P∈T
〈f, φP 〉φP (x)aP (x)| ≤

∑

P∈T
|I|=2j(x)

|〈f, φP 〉φP (x)|.

The right side above can be bounded by M[f ](x) and applying the Lp bound
for M gives (9).

To obtain the bound for arbitrary collections of multitiles (8), we would
like to decompose P into the union of trees T and estimate each tree individ-
ually. The bound (9) is too crude for this purpose– one would like to improve
the right side ‖f‖Lp to a quantity which captures only the parts of f and
aP corresponding to the phase-space support of T . This is (at least sort of
morally) accomplished by considering the quantities energy and density.

The energy of a collection of multitiles Q is

sup
T

(
1

|IT |
∑

P∈T
|〈f, φP 〉|2)1/2

where the sup is over all l-overlapping trees T ⊂ Q. The density of Q is

sup
T

(

∫

E

(1 + |x− c(IT )|/|IT |)−4
M∑

k=1

|ak(x)|r
′

1ωT
(ξk−1(x)) dx)

1/r′

where the sup is over all nonempty trees T contained inQ, 1 denotes the char-
acteristic function of a set, and 1E is a (fixed depending on f , independent
of Q) dualizing function.

88



Using the ideas from the proof of (9) together with a careful localization
argument (essentially as in [8]), one then proves

‖1E
∑

P∈T
〈f, φP 〉φPaP‖Lp ≤ Cp,r energy(T )(density(T ))min(1,r′/p)|IT |1/p. (10)

12.3.3 Bound for arbitrary collections of tiles

We now want to obtain (8) from (10); for simplicity assume f = 1F where F
has finite measure, also consider a dualizing function 1E where |E| ≈ 1 (we
can at least assume this after rescaling).

The more complicated case is |F | ≥ 1 We decompose

P =
⋃

k≥0

⋃

T∈Tk

T

where the union above is disjoint and, for each k, Tk is a collection of trees
which satisfy

energy(T ) ≤ 2−k/2|F |1/2, density(T ) ≤ 2−k/r
′

for every T ∈ Tk (11)

‖
∑

T∈Tk

1IT ‖L1 ≤ C2k (12)

‖
∑

T∈Tk

1IT ‖BMO ≤ C2k|F |−1. (13)

This decomposition is obtained through energy/density decrement lemmas
such as in [8], with the additional consideration of the BMO norm. In reality
we are not actually able to obtain (13) from the density lemma, but through
some additional decompositional trickery we may pretend it holds.

Then

‖1E
∑

P∈P

〈f, φP 〉φPaP‖L1 ≤
∑

k≥0

‖1E
∑

T∈Tk

∑

P∈T
〈f, φP 〉φPaP‖L1 .

Through the use of exceptional sets, we can basically pretend the BMO norm
in (13) is an L∞ norm. Ignoring some additional technical complications with
Schwartz tails, we assume that each φP is supported on I. Then we obtain,
for each k,

‖1E
∑

T∈Tk

∑

P∈T
〈f, φP 〉φPaP‖L1 ≤ C2k/r|F |−1/r‖1E(

∑

T∈Tk

|
∑

P∈T
〈f, φP 〉φPaP |r

′

)1/r′‖L1
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Estimating L1 by Lr
′
and applying (10) with p = r′, we bound the right side

above by

C2k/r|F |−1/r2−k/2|F |1/22−k/r′(
∑

T∈Tk

|IT |)1/r′

which, by (12) is

≤ C2−k(
1
2
− 1

r
)|F |1/2−1/r

Summing over k gives

‖1E
∑

P∈P

〈f, φP 〉φPaP‖L1 ≤ C|F |1/2−1/r.

This proves the desired bound when p < (1/2− 1/r)−1. This restriction in p
may be lifted by using the monotonicity of the V r norms.

The bound when |F | < 1 is essentially as in [5]. An exceptional set where
M[f ] is large is defined. Throwing out multitiles whose time support is
contained inside this exceptional set, we obtain a good bound on the energy
of the remaining tiles using a square function argument. Then we apply (10)
with p = 1 (in this case no BMO estimates are needed), and everything adds
up.

12.4 Variational norms on Lie groups

Let G be a connected finite-dimensional Lie group with Lie algebra g. We
begin by recalling the construction of a left-invariant metric on G. Letting
‖ · ‖g be any norm on g, push forward with left-multiplication to define a
norm on each tangent space TgG of the group ‖x‖TgG = ‖g−1x‖g (here g−1

denotes the inverse of the differential of the map from G → G defined by
left-multiplication by g – this notation is natural when G is a matrix group).
The induced norm is left-invariant i.e. ‖hx‖ThgG = ‖x‖TgG. We define the
length of a continuously differentiable path γ : [a, b] → G by

|γ| =

∫ b

a

‖γ′(t)‖Tγ(t)G dt (14)

and the metric d(g, g′) on G

d(g, g′) = inf
γ:γ(a)=g,γ(b)=g′

|γ|. (15)
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Now we consider variational lengths of curves. For 1 ≤ r < ∞ and a
continuous path γ : [a, b] → G define the r-variation of γ

‖γ‖V r = sup
N,t0<...<tN∈[a,b]

(
N∑

j=1

d(γ(tj−1), γ(tj))
r)1/r. (16)

This is extended to r = ∞ in the usual way, replacing the sum by a sup .
When γ is differentiable, the V 1 norm coincides with the length |γ| defined
earlier; the V ∞ norm is just the diameter of the curve.

Associated to each continuously differentable curve γ : [a, b] → G is the
left trace γl : [a, b] → g defined

γl(t) =

∫ t

a

γ(s)−1γ′(s) ds.

Note that one can recover the original curve from the trace, by solving the
ordinary differential equation

γ′(t) = γ(t)γ′l(t)

with the initial condition γ(a). Using ‖·‖g in place of ‖·‖Tγ(t)G, the definitions
(14),(15),(16) yield notions of length and r-variation for curves in g. We then
have

‖γl‖V 1 = ‖γ‖V 1 . (17)

The main result here is that (17) can be (sort of) extended to 1 ≤ r < 2 :

Theorem 2. Suppose 1 ≤ r < 2 and γ : [a, b] → G is smooth. Then

‖γ‖V r ≤ ‖γl‖V r + C min(‖γl‖2
V r , ‖γl‖rV r)

and
‖γl‖V r ≤ ‖γ‖V r + Cmin(‖γ‖2

V r , ‖γ‖rV r)

Now a few words describing the proof. An induction on scales argument
using the Baker-Campbell-Hausdorff formula allows one to basically reduce
matters to comparing d(γ(tj−1), γ(tj)) with d(γl(tj−1), γl(tj)) where tj−1 and
tj are close together and “close” is allowed to depend on γ. Using left-
invariance, we have d(γ(tj−1), γ(tj)) = d(I, γ(tj−1)

−1γ(tj)) (here I ∈ G is
the identity). In the special case that γl is a straight line on [tj−1, tj ] we
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have γ(tj−1)
−1γ(tj) = exp(γl(tj) − γl(tj−1)) and so d(1, γ(tj−1)

−1γ(tj)) =
d(γl(tj−1), γl(tj)). But, any differentiable function is locally linear, so for tj−1

and tj close-together γl is almost a straight line on [tj−1, tj]. Using stability
of solutions to ODE’s, almost is good enough.

Here is the motivation for Theorem 2. Fix a Lie group G and any two
vectors w, v ∈ g. Given a function f on R and a frequency ξ ∈ R we can
define a curve γ in G via the formula

γ′l(t) = Re(e−2πiξtf(t))w + Im(e−2πiξtf(t))v

and initial condition γ(0) = I. Then, we can define a “nonlinear Fourier
summation operator” NC[f ](ξ, x) = γ(x). The trace γl is identified with the
usual partial Fourier transform C[f ](ξ, x) =

∫ x
0
e−2πiξtf(t) dt. Theorem 2

then allows one to deduce the bound

‖1|NC[f ]|≤1NC[f ]‖
Lp′

ξ
(V r

x )
≤ C‖f‖Lp(R)

for r < 2 from the variational version of the Menshov-Paley-Zygmund theo-
rem

‖C[f ]‖
Lp′

ξ (V r
x )

≤ C ′‖f‖Lp (18)

which holds for 1 ≤ p ≤ 2 and r > p′.
For p = 2, the bound (18) is a restatement of the p = 2 case of Theorem

1. For p < 2, it follows by interpolating p = 2 with a trivial estimate at
p = 1. Alternately, one can apply a variational version of the Christ-Kiselev
lemma (which can be proven using the usual Christ-Kiselev lemma from [3])
to deduce (18) for p < 2 from the Hausdorff-Young inequality.

A case of particular interest above is when G = SU(1, 1),

w =

(
0 1
1 0

)
, and v =

(
0 i
−i 0

)
.

Here, one obtains estimates which give a variational/Dirac operator version
of the Christ-Kiselev theorem from [4].
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13 On multilinear oscillatory integrals, non-

singular and singular

after M. Christ, X. Li, T. Tao and C. Thiele [2]
A summary written by Diogo Oliveira e Silva

Abstract

We explore the relationship between decay estimates for certain
multilinear oscillatory integrals and nondegeneracy of the correspond-
ing polynomial phase.

13.1 Introduction

The classical theory of oscillatory integrals of the second kind [3] establishes
the boundedness of operators of the form

(Tλf)(ξ) =

∫

Rm

eiλΦ(x,ξ)f(x)ψ(x, ξ)dx.

Here ψ is a fixed smooth function of compact support in x and ξ, the phase
Φ is real-valued and smooth and the Hessian of Φ is nonvanishing on the
support of ψ. In this case,

‖Tλ(f)‖L2(Rm) ≤ Cλ−m/2‖f‖L2(Rm).

Aiming at similar results in a somewhat different context, we start by
considering multilinear oscillatory operators of the form

Λλ(f1, . . . , fn) =

∫

Rm

eiλP (x)

n∏

j=1

fj ◦ πj(x)η(x)dx.

Here P : Rm → R is a real-valued polynomial, πj : Rm → Vj are orthogonal
projections onto some subspaces Vj of Rm, fj : Vj → C are locally inte-
grable functions with respect to Lebesgue measure on Vj, and η ∈ C1

0(R
m)

is compactly supported. We assume that all the subspaces Vj have the same
dimension, which we denote by κ.
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Definition 1. A polynomial P has the power decay property with respect
to {Vj}nj=1 in an open set U ⊂ Rm if for any η ∈ C1

0(U), there exist ǫ > 0
and C <∞ such that

|Λλ(f1, . . . , fn)| ≤ C(1 + |λ|)−ǫ
n∏

j=1

‖fj‖L∞(Vj), ∀fj ∈ L∞(Vj), ∀λ ∈ R. (1)

The goal is to characterize data (P, {Vj}j) for which the power decay prop-
erty holds, and this is accomplished to a significant but incomplete extent in
[2].

Observe that, if P =
∑

j fj ◦ πj for some measurable functions fj , then
(1) cannot hold. This motivates the following definition:

Definition 2. A polynomial P is degenerate with respect to {Vj}nj=1 if P =∑n
j=1 pj ◦ πj for some polynomials pj : Vj → R. Otherwise P is said to be

nondegenerate. If n = 0, P is degenerate if and only if P is constant.

An important definition is not complete without a good example:

Example 3. In R3, let P (x) = x2
3 and L = ∂2

∂x2
3
− ∂2

∂x2
1
− ∂2

∂x2
2
. Let n ≥ 1 be

arbitrary. For 1 ≤ j ≤ n, take light-cone unit vectors vj = (v1
j , v

2
j , v

3
j ) ∈ R3

such that (v3
j )

2 = (v1
j )

2 + (v2
j )

2. Let πj be the orthogonal projection onto
Vj := span (vj), that is, πj(x) = x·vj = x1v

1
j+x2v

2
j+x3v

3
j . One readily checks

that P is nondegenerate with respect to {Vj}nj=1, for every n ∈ N. This is
surprising in view of the following fact: in R2, any polynomial Q : R2 → R of
degree two is degenerate with respect to any family of three or more mappings
of the form πj(x) = x · wj (where none of the wj is a multiple of any of the
others).

The nondegeneracy condition is to replace the hypothesis of a nonvan-
ishing derivative in the result about oscillatory integrals of the second kind.
The question is then the following:

Question 4. Is the power decay property equivalent to nondegeneracy?

The cases n = 0, 1 fall into the theory of oscillatory integrals of the first
kind. In the case n = 2 one is dealing with bilinear forms 〈Tλ(f1), f2〉, where
the associated operators Tλ are of the form discussed above. If n ≥ 3 and
m < nκ, however, there arises a class of singular oscillatory integrals which
have no direct analogues in the bilinear case.
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13.2 Algebraic aspects of nondegeneracy

We begin our discussion by introducing a new definition:

Definition 5. A polynomial P is simply nondegenerate with respect to
{Vj}nj=1 if there exists a differential operator of the form L =

∏n
j=1wj · ▽

with wj ∈ V ⊥
j and such that L(P ) does not vanish identically.

Simple nondegeneracy implies nondegeneracy, but the converse does not
hold in general (example 3). The converse does hold, however, in the follow-
ing two special cases:

(i) If κ = m− 1;

(ii) If n(m− κ) ≤ m and the Vj’s are in general position35.

We have the following characterization of nondegeneracy:

Lemma 6. Let P be a real-valued polynomial of degree d. Then:

(i) P is nondegenerate if and only if there exists a constant-coefficient
partial differential operator L such that L(P ) 6= 0 but L(

∑
j pj ◦πj) = 0

for every polynomial pj of degree d;

(ii) P is degenerate if and only if P =
∑

j hj ◦ πj for some distributions
h ∈ D′(Vj);

(iii) P is nondegenerate if and only if one of its homogeneous summands is
nondegerate.

In the case of homogeneous polynomials, we can refine our characteriza-
tion as follows:

Lemma 7. Let P be a homogeneous polynomial of degree d. Then:

(i’) P is nondegenerate if and only if there exists a constant-coefficient par-
tial differential operator L, homogeneous of degree d, such that L(P ) 6=
0 but L(

∑
j pj ◦ πj) = 0 for every polynomial pj of degree d;

(ii’) P is degenerate if and only if P =
∑

j pj ◦ πj for some homogeneous
polynomials pj of degree d.

35In this context, a family of subspaces {Vj}n
j=1 of Rm of dimension κ is said to be

in general position if any subfamily of cardinality k ≥ 1 spans a subspace of dimension
min{kκ,m}.
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13.3 Main results

13.3.1 Further definitions

Let P≤d denote the finite-dimensional vector space of polynomials in Rm of
degree ≤ d, endowed with a metric ‖ ·‖. Given d, the norm of P with respect
to {Vj}nj=1 is defined to be

[P ]d,{Vj}j
:= inf

deg pj≤d
‖P −

n∑

j=1

pj ◦ πj‖.

This indeed defines a norm on the quotient space P≤d modulo degenerate
polynomials.

Definition 8. A family of polynomials {Pα}α is uniformly nondegenerate
with respect to {Vj}nj=1 if there exist d <∞ and c > 0 such that

sup
α

degPα ≤ d and inf
α

[Pα]d,{Vj}j
≥ c.

Definition 9. The collection {Vj}nj=1 has the power decay property if every
polynomial P which is nondegenerate with respect to {Vj}j has the power
decay property (1) in every open set U . The power decay is uniform if (1)
holds with uniform constants C, ǫ for any family of polynomials which are
uniformly nondegenerate with respect to {Vj}j.

13.3.2 Decay for nonsingular multilinear oscillatory integrals

The first result states that a simply nondegenerate polynomial has the power
decay property in every open set. More precisely:

Theorem 10. Fix d ∈ N and c > 0. Consider the operator L =
∏

j wj ·▽ with

wj ∈ V ⊥
j and ‖wj‖ = 1. Then there exist C <∞ and ǫ > 0 with the following

property: if P is a polynomial such that degP ≤ d and max|x|≤1 |L(P )(x)| ≥
c, then (1) holds.

As corollaries, we get that families of codimension one subspaces have the
uniform power decay property, as do families of small36 codimension sub-
spaces in general position.

The second result tells us that the same conclusion still holds in the one-
dimensional case, provided we do not consider “too many” subspaces:

36Here, “small” means that n(m− κ) ≤ m.
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Theorem 11. If n < 2m, then any family {Vj}j of one-dimensional sub-
spaces which lie in general position has the uniform power decay property.
Moreover under these assumptions

|Λλ(f1, . . . , fn)| ≤ C(1 + |λ|)−ǫ
n∏

j=1

‖fj‖L2(R), ∀fj ∈ L2(R), ∀λ ∈ R (2)

uniformly for all polynomials P which are uniformly nondegenerate with re-
spect to {Vj}j.

The rest of this paper is devoted to outlining the proofs of theorem 10
(the simply nondegenerate case) and theorem 11 (the case κ = 1). Both
proofs are by induction on the number of subspaces, the base case n = 0
being a straightforward consequence of the well-known theory of oscillatory
integrals of the first kind.

13.4 The simply nondegenerate case

In this section we sketch the proof of the fact that families of codimension
one subspaces have the uniform power decay property. This turns out to be
equivalent to theorem 10.

We start by expressing Λλ(f1, . . . , fn) = 〈Tλ(f1, . . . , fn−1), f̄n〉. By Cauchy-
Schwarz, it is enough to show the existence of C <∞ and ǫ > 0 such that

‖Tλ(f1, . . . , fn−1)‖2 ≤ Cλ−ǫ
n−1∏

j=1

‖fj‖∞ for |λ| ≥ 1.

Choose coordinates x = (y, z) ∈ Rm−1 × R in such a way that Vn =
{z = 0}, and define Qζ(y, z) := P (y, z) − P (y, z + ζ), F ζ

j (πj(y, z)) :=

fj(πj(y, z))f̄j(πj(y, z + ζ)) and η̃ζ(y, z) := η(y, z)η̄(y, z + ζ). Then

‖Tλ(f1, . . . , fn−1)‖2
2 =

∫

R

(∫

Rm

eiλQζ(x)
n−1∏

j=1

F ζ
j (πj(x))η̃ζ(x)dx

)
dζ

=:

∫

R

Λζ
λ(F

ζ
1 , . . . , F

ζ
n−1)dζ.

Since P is nondegenerate and κ = m − 1, P is simply nondegenerate.
Let L =

∏n
j=1wj · ▽ be such that max|x|≤1 |L(P )(x)| ≥ c > 0 and L′ :=∏

j<nwj · ▽. The key idea is to define the sublevel set
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Eρ := {ζ ∈ R : max
|x|≤1

|L′Qζ(x)| ≤ ρ}

and to prove the bound |Eρ| ≤ Cρδ for some C < ∞ and δ > 0. For this
purpose, note that the hypothesis on L and the fact that wn · ▽ = ∂xm

together imply that sup(x,ζ) |∂ζ(L′Qζ(x))| ≥ c. The desired bound follows
from a well-known sublevel set estimate [1], provided x, ζ are restricted to lie
in a fixed bounded set.

If ζ /∈ Eρ, we use the induction hypothesis to conclude that

|Λζ
λ(F

ζ
1 , . . . , F

ζ
n−1)| ≤ C(1 + |λ|ρ)−ǫ′

∏

j<n

‖fj‖2
∞.

Putting everything together, we have that

‖Tλ(f1, . . . , fn−1)‖2
2 =

∫

R\Eρ

Λζ
λ(F

ζ
1 , . . . , F

ζ
n−1)dζ +

∫

Eρ

Λζ
λ(F

ζ
1 , . . . , F

ζ
n−1)dζ

≤C(1 + |λ|ρ)−ǫ′
∏

j<n

‖fj‖2
∞ + C|Eρ|

∏

j<n

‖F ζ
j ‖∞

≤C((|λ|ρ)−ǫ′ + ρδ)

n−1∏

j=1

‖fj‖2
∞.

Choosing ρ = |λ|− ǫ′

ǫ′+δ yields the desired bound.

13.5 The case κ = 1

This section is devoted to presenting the main ideas behind the proof of the
statement that, for a family {Vj}j of one-dimensional subspaces which lie in
general position, the estimate (2) holds provided n < 2m. This last condition
turns out to be necessary as well.

Since the case n < m follows by a simple argument from the case n = m
and the theorem is already known in a more precise form when n = m [3],
we may assume without loss of generality that m < n < 2m.

Letting A(λ) denote the best constant for which

|Λλ(f1, . . . , fn)| ≤ A(λ)
∏

j

‖fj‖2,
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it is enough to show that |A(λ)| ≤ C|λ|−ǫ for some ǫ > 0.
In what follows we may assume that f1 is λ-uniform in the sense that its

generalized Fourier coefficients satisfy the bounds

∣∣∣
∫
f1(t)e

−iq(t)dt
∣∣∣ ≤ C|λ|−τ‖f1‖2 uniformly for all real-valued polynomials q.

Indeed, f1 could otherwise be decomposed in L2 into its projection onto eiq

plus an orthogonal vector in such a way that

‖f1 − ceiq‖2 ≤ (1 − |λ|−2τ)‖f1‖2,

and the desired conclusion would then follow from this and the inductive
hypothesis.

We lose no generality in assuming that ‖fj‖2 ≤ 1 for every j.
Endowing Rm with suitable coordinates is once again an important tech-

nical point of the proof. For this purpose, let e1 be a unit vector orthogonal
to the span of {Vj}mj=2, and e2 be a unit vector orthogonal to the span of
{Vj}nj=m+1 and not orthogonal to V1. Then e1 and e2 are linearly independent,
and so we write Rm ∋ x = t1e1 + t2e2 + y (that is, x = (t, y) ∈ R2 × Rm−2).

Defining P y(t) := P (t, y),

F y
1 (t2) :=

m∏

j=2

fj(πj(t, y)),

F y
2 (t1) :=

n∏

j=m+1

fj(πj(t, y)) and Gy(π(t)) := f1(π1(t, y)),

we have that

Λλ(f1, . . . , fn) =

∫

Rm−2

(∫

R2

eiλP
y(t)F y

1 (t2)F
y
2 (t1)G

y(π(t))η(t, y)dt
)
dy

=:

∫

Rm−2

Λy
λdy.

Moreover the assumptions, Fubini’s theorem and Cauchy-Schwarz to-
gether imply that
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∫

Rm−2

‖F y
1 ‖2‖F y

2 ‖2‖Gy‖2dy <∞. (3)

The last important step consists of introducing a set of “bad” param-
eters, denoted B, consisting of all y for which P y has small norm in the
quotient space P≤d modulo degenerate polynomials with respect to the three
projections t 7→ t1, t2, π(t). More precisely, y ∈ B if P y can be decomposed
as

P y(t) = Q1(t1) +Q2(t2) +Q3(π(t)) +R(t),

for some polynomials Qj and R of degree ≤ d, with the additional require-
ment that ‖R‖ ≤ |λ|−ρ (here ‖ · ‖ denotes a given norm on P≤d and ρ is a
small parameter to be chosen later on).

On B∁, we can use theorem 10 with m = 2 and n = 3, interpolate, and
appeal to (3) to conclude that

∫

y/∈B
|Λy

λ|dy ≤ C|λ|−(1−ρ)ρ̃ for some ρ̃ > 0.

Despite that fact that the set of bad parameters might have full measure
(example 3), we will be in good shape if we show that if ρ is small enough,
then there exists ǫ̃ > 0 such that

|Λy
λ| ≤ C|λ|−ǫ̃‖F y

1 ‖2‖F y
2 ‖2‖Gy‖2 uniformly for all y ∈ B.

This is a nice exercise in Fourier analysis and involves a clever use of the
uniformity condition on f1. I will omit the details for now and present them
at the summer school.
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14 Bi-parameter paraproducts

after C. Muscalu, J. Pipher, T. Tao and C. Thiele [1]
A summary written by Katharine Ott

Abstract

The authors prove the bi-parameter analogue of the Coifman-
Meyer theorem.

14.1 Introduction

Let m(= m(γ)) in L∞(R2) be a bounded function, smooth away from the

origin, satisfying |∂βm(γ)| . 1
|γ||β| for sufficiently many β. Denote by T

(1)
m

the bi-linear operator

T (1)
m (f, g)(x) =

∫

R2

m(γ)f̂(γ1)ĝ(γ2)e
2πix(γ1+γ2)dγ, (1)

where f, g are Schwartz functions on the real line R. Then the classical
Coifman-Meyer theorem states the following.

Theorem 1. The operator T
(1)
m defined in (1) maps Lp×Lq → Lr boundedly

provided that 1 < p, q ≤ ∞, 1
r

= 1
p

+ 1
q

and 0 < r <∞.

Now consider the bi-parameter analogue of T
(1)
m . Let m(= m(ξ, η)) in

L∞(R4) be a bounded function that is smooth away from the subspaces
{ξ = 0} ∪ {η = 0} and satisfying

|∂α1
ξ1
∂α2
ξ2
∂β1
η1 ∂

β2
η2m(ξ, η)| ≤ 1

|(ξ1, η1)|α1+β1|(ξ2, η2)|α2+β2
(2)

for sufficiently many multi-indices α, β. Denote by Tm the bi-linear operator
given by

Tm(f, g)(x) =

∫

R4

m(ξ, η)f̂(ξ)ĝ(η)e2πix(ξ+η)dξdη, (3)

where f, g are Schwartz functions on the plane R2. The main result of the
paper is the following.

Theorem 2. Let m be a symbol in R4 satisfying (2). Then the bilinear
operator Tm defined by (3) maps Lp × Lq → Lr boundedly as long as 1 <
p, q ≤ ∞, 1

r
= 1

p
+ 1

q
and 0 < r <∞.
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This summary proceeds as follows. In the next section the operator Tm
will be discretized and reduced to finitely many bi-parameter paraproducts.
At this stage the proof of the main result reduces to a proposition regarding
the size of each paraproduct. The third section summarize the main steps
in proving Proposition 3. As noted in [1], the n-linear analogue of the main
theorem is true for n ≥ 1 (see also [2]).

14.2 Bi-parameter paraproducts

The first step toward proving Theorem 2 is to separate the operator Tm into
smaller pieces well suited to its bi-parameter structure. The operator Tm can
be discretized into finitely many operators of the form

Π
~j
~P
(f, g) =

∑

~P∈~P

1

|I~P |1/2
〈f,Φ1

~P1
〉〈g,Φ2

~P2
〉Φ3

~P3
, (4)

where ~j = (j
′
, j

′′
) ∈ {1, 2, 3}2. Due to the symmetry in (4) is suffices to

analyze only one case; consider ~j = (1, 2). Also, in the equation above f, g are

complex-valued measurable functions on R2, ~P is a collection of bi-parameter
tiles corresponding to lattice points ~k = (k

′
, k

′′
),~l = (l

′
, l

′′
), ~k,~l ∈ Z2, and

I~P = IP ′ × IP ′′ with P
′
, P

′′
dyadic intervals. Specifically, ~Pi = (P

′

i , P
′′

i ) and

~P1 = (2−k
′

[l
′

, l′ + 1] × 2k
′

[−1

4
,
1

4
], 2−k

′′

[l
′′

, l
′′

+ 1] × 2k
′′

[
3

4
,
5

4
]),

~P2 = (2−k
′

[l
′

, l′ + 1] × 2k
′

[
3

4
,
5

4
], 2−k

′′

[l
′′

, l
′′

+ 1] × 2k
′′

[−1

4
,
1

4
]),

~P3 = (2−k
′

[l
′

, l′ + 1] × 2k
′

[−7

4
,−1

4
], 2−k

′′

[l
′′

, l
′′

+ 1] × 2k
′′

[−7

4
,−1

4
]),

and |I~P | := |I~P1
| = |I~P2

| = |I~P3
| = 2−k

′

2−k
′′

. Then the functions Φi
~Pi

=

Φi
P

′
i

⊗Φi
P

′′
i

, i = 1, 2, 3, are L2(R2)-normalized bump functions adapted to ~Pi.

In particular, if i 6= j
′
, then

∫
R

Φi
P

′
i

(x)dx = 0 and if i 6= j
′′
,
∫

R
Φi
P

′′
i

(x)dx = 0.
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Denote by Λ~P(f, g, h) the trilinear form given by

Λ~P(f, g, h) =

∫

R2

Π~P(f, g)(x)h(x)dx

=
∑

~P∈~P

1

|I~P |1/2
〈f,Φ1

~P1
〉〈g,Φ2

~P2
〉〈h,Φ3

~P3
〉. (5)

The following proposition is the key ingredient in the proof of the main result.
Once it is proved, the statement of Theorem 2 follows by appealing to the
symmetry of the paraproduct and utilizing multilinear interpolation.

Proposition 3. Let 1 < p, q < ∞ be two numbers arbitrarily close to 1.
Also, let f ∈ Lp, g ∈ Lq such that ||f ||p = ||g||q = 1, and E3 ⊆ R2 with
|E3| = 1. Then, there exists a subset E

′

3 ⊆ E3, |E ′

3| ∼ 1 such that, for
h := χE′

3
, ∣∣Λ~P(f, g, h)

∣∣ . 1. (6)

To construct the set E
′

3 with the desired properties, define the maximal-
square function, the square-maximal function and the square-square function
as follows. Let I, J ⊆ R be dyadic intervals and denote Iλ,t = 2−λ[t, t + 1].
Next, let Φi

R~λ,~ti

= Φi
I
λ
′
,t
′
i

⊗ Φi
J

λ
′′

,t
′′
i

. For (x
′
, x

′′
) ∈ R2 define

MS(f)(x
′

, x
′′

) := sup
I

1

|I|1/2


 ∑

J :R=I×J∈~P

sup
~λ,~t1

|〈f,Φ1
R~λ, ~t1

〉|2

|J | χJ(x
′′

)




1/2

χI(x
′

),

SM(g)(x
′

, x
′′

) :=



∑

I

supJ :R=I×J∈~P sup~λ,~t2

|〈g,Φ2
R~λ, ~t2

〉|2

|J | χJ(x
′′
)

|I| χI(x
′

)




1/2

,

and

SS(h)(x
′

, x
′′

) :=


∑

R∈~P

sup
~λ,~t3

|〈h,Φ3
R~λ, ~t3

〉|2

|R| χR(x
′

, x
′′

)




1/2

.

Finally, recall the bi-parameter Hardy-Littlewood maximal function

MM(F )(x
′

, x
′′

) := sup
(x′ ,x′′)∈I×J

1

|I||J |

∫

I×J
|F (y

′

, y
′′

)|dy′

dy
′′

.
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It can be shown that all four of these operators MS, SM , SS and MM
are bounded on Lp(R2), 1 < p <∞. Then set

Ω0 = {x ∈ R2 : MS(f)(x) > C} ∪ {x ∈ R2 : SM(g)(x) > C}
∪{x ∈ R2 : MM(f)(x) > C} ∪ {x ∈ R2 : MM(g)(x) > C}. (7)

Also, define
Ω = {x ∈ R2 : MM(χΩ0)(x) >

1
100

}, (8)

and
Ω̃ = {x ∈ R2 : MM(χΩ)(x) > 1

2
}.

Fix C > 0 large enough such that |Ω̃| < 1
2
. Then define E

′

3 := E3 ∩ Ω̃c and

observe that |E ′

3| ∼ 1 as desired.

14.3 Proof of Proposition 3

Recall that the goal is to prove |Λ~P(f, g, h)| . 1. It is equivalent to show
that

∑

~P∈~P

1

|I~P |1/2
|〈f,Φ ~P1

〉||〈g,Φ ~P2
〉||〈h,Φ ~P3

〉| . 1. (9)

Using the definition of Ω given in (8), split the preceding sum as

∑

I~P
∩Ωc 6=∅

+
∑

I~P
∩Ωc=∅

=: I + II. (10)

14.3.1 Estimates for term I

Since I~P ∩ Ωc 6= ∅, it follows that |I~P ∩ Ωc
0| > 99

100
|I~P |.

The next step in estimating term I is to define three decomposition pro-
cedures, one for each function f, g and h. First, define a sequence of sets

Ω1 =
{
x ∈ R2 : MS(f)(x) > C

21

}
, T1 = {~P ∈ ~P : |I~P ∩ Ω1| > 1

100
|I~P |},

Ω2 =
{
MS(f)(x) > C

22

}
, T2 = {~P ∈ ~P \ T1 : |I~P ∩ Ω2| > 1

100
|I~P |},

and so on. The constant C > 0 is the same constant appearing in the
definition of E

′

3. Since there are finitely many tiles ~P ∈ ~P this algorithm

stops eventually, producing sets {Ωn} and {Tn} such that ~P =
⋃
nTn.
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Simultaneously, define another sequence of sets {Ω′

n} and {T′

n} by re-

placing MS(f)(x) with SM(g)(x) above. Then ~P =
⋃
nT

′

n as well. Finally
it is left to find the appropriate decomposition for the function h. First con-
struct the analogue of the set Ω0 as in (7) for h as follows. Pick N > 0 a

big enough integer so that for every ~P ∈ ~P we have |I~P ∩ Ω
′′

−N | > 99
100

|I~P |,
where Ω

′′

−N = {x ∈ R2 : SS(h)(x) > C2N}. Then mimicking the previous
decompositions, define

Ω
′′

−N+1 =
{
x ∈ R2 : SS(h)(x) > C2N

21

}

and
T

′′

−N+1 = {~P ∈ ~P : |I~P ∩ Ω
′′

−N+1| > 1
100

|I~P |},
and so on, constructing sets {Ω′′

n} and {T′′

n} such that ~P =
⋃
n T

′′

n.
Write term I as

∑

n1,n2>0,n3>−N

∑

~P∈Tn1,n2,n3

1

|I~P |3/2
|〈f,Φ ~P1

〉||〈g,Φ ~P2
〉||〈h,Φ ~P3

〉||I~P |, (11)

where Tn1,n2,n3
:= Tn1

∩ T
′

n2
∩ T

′′

n3
. Using the fact that ~P ∈ Tn1,n2,n3

means that ~P has not been selected in the previous n1 − 1, n2 − 1, n3 − 1
steps, respectively, it follows that |I~P ∩ Ωc

n1−1 ∩ Ω
′c
n2−1 ∩ Ω

′′c
n3−1| > 97

100
|I~P |.

Then (11) is smaller than

.
∑

n1,n2>0
n3>−N

∫

Ωc
n1−1∩Ω

′c
n2−1∩Ω

′′c
n3−1∩Tn1,n2,n3

MS(f)(x)SM(g)(x)SS(h)(x)dx

.
∑

n1,n2>0
n3>−N

2−n12−n22−n3|ΩTn1,n2,n3
|, (12)

where ΩTn1,n2,n3
:=
⋃

~P∈Tn1,n2,n3

I~P .

On the other hand, using |ΩTn1,n2,n3
| ≤ |ΩTn

i
| for each i = 1, 2, 3, one can

deduce that |ΩTn1,n2,n3
| . 2n1p, |ΩTn1,n2,n3

| . 2n2q, and |ΩTn1,n2,n3
| . 2n3α

for every α > 1. It follows that

|ΩTn1,n2,n3
| . 2n1pθ12n2qθ22n3αθ (13)

for any 0 ≤ θ1, θ2, θ3 < 1 such that θ1 + θ2 + θ3 = 1.
Now split (12) into two terms, a sum over n3 > 0 and a sum over 0 >

n3 > −N . In each of these two terms apply (13) with an appropriate choice
for θ1, θ2, θ3 and it follows that the sum in (12) is O(1).
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14.3.2 Estimates for term II

The sum in term II runs over all tiles I~P such that I~P ⊆ Ω. For every such
~P there exists a maximal dyadic rectangle R such that I~P ⊆ R ⊆ Ω. Collect
all the distinct maximal rectangles into a set called Rmax. Then for d ∈ Z,
d ≥ 1, let Rd

max denote the set of all R ∈ Rmax such that 2dR ⊆ Ω̃ and d is
maximal with this property.

Then term II is bounded by

∑

d≥1

∑

R∈Rd
max

∑

I~P
⊆R∩Ω

1

|I~P |1/2
|〈f,Φ~P1

〉||〈g,Φ~P2
〉||〈h,Φ~P3

〉|.

The estimate of term II reduces to the following claim: For every R ∈ Rd
max,

∑

I~P
⊆R∩Ω

1

|I~P |1/2
|〈f,Φ~P1

〉||〈g,Φ~P2
〉||〈h,Φ~P3

| . 2−Nd|R|. (14)

An application of Journé’s lemma gives that for every ǫ > 0,
∑

R∈Rd
max

|R| .

2ǫd|Ω|. Assuming the claim holds, combining this result with (14) gives
∑

d≥1

∑

R∈Rd
max

2−Nd|R| =
∑

d≥1

2−Nd
∑

R∈Rd
max

|R| .
∑

d≥1

2−Nd2ǫd . 1, (15)

which completes the estimate of term II. The proof of the claim relies on a
splitting argument, the details of which are omitted in this short summary.

As a final note, the authors remark in [1] that the estimate for term II can
be replaced by a simpler argument which avoids the use of Journé’s lemma.
The details of this simplified argument, which also extends Theorem 2 to the
multi-parameter setting, can be found in [2].
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15 WKB asymptotic behavior of almost all

generalized eigenfunctions for one-dimensional

Schrödinger operators with slowly decay-

ing potentials

after M. Christ and A. Kiselev [1]
A summary written by Eyvindur Ari Palsson

Abstract

We consider slowly decaying potentials V where V = V1 + V2,
V1 ∈ Lp(R), V2 is bounded from above with A = lim supx→∞ V (x)
and V ′

2 ∈ Lp(R for some 1 ≤ p < 2. We then prove that solutions of

the differential equation −d2u
dx2 + V (x)u = Eu have WKB asymptotic

behavior for a.e. E > A. This implies that Schrödinger operators with
such slowly decaying potentials have absolutely continuous spectrum
on ]A,∞[.

15.1 Introduction

LetD = d
dx

, where x ∈ R. We will be studying a time-independent Schrödinger
operator on the real line

HV = −D2 + V

where V is a real valued potential. A quantum mechanical interpretation
of H0 = −D2, the free Hamiltonian, is that it describes the behavior of a
free electron, while HV = H0 + V describes one electron that interacts with
an external electrical field which is described by the potential V . If V is
sufficiently small then we expect the spectrum of HV to resemble that of H0.

Any finite measure µ can be decomposed as µ = µac + µsc + µpp where
µac is absolutely continuous with respect to the Lebesgue measure, µsc is
singular with respect to the Lebesgue measure and contains no atoms and
µpp is singular with respect to the Lebesgue measure and is a countable linear
combination of Dirac masses. To any self-adjoint operator H on a Hilbert
space H and any vector φ ∈ H there is associated a spectral measure µφ that
satisfies

〈f(H)φ, φ〉 =

∫

R

f(λ)dµφ(λ)
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for any Borel measurable, bounded function f . We say that H has absolutely
continuous (ac) spectrum if there exists some φ 6= 0 such that (µφ)ac 6= 0 and
purely absolutely continuous spectrum if uφ = (µφ)ac for all φ. The spectrum
for the free Hamiltonian H0 is R+ and it has a purely absolutely continuous
spectrum.

A generalized eigenfunction is defined, in this paper, as any solution of
the ordinary differential equation

(−D2 + V − E)u = 0.

The L2 solutions of this equation give the eigenfunctions that dictate the
point spectrum. It is also well known that boundedness of generalized eigen-
functions implies positivity of the derivative of the spectral measure which
then implies that the spectral measure has a nonzero absolutely continuous
component. Thus it is of interest to explore the asymptotic behavior of solu-
tions to HV u = Eu to see if HV has an absolutely continuous spectrum like
H0.

15.2 Results

We define the space lp(Lq)(R) by saying that a function f belongs to it if

‖f‖lp(Lq)(R) =

( ∞∑

n=−∞

(∫ n+1

n

|f(x)|qdx
)p/q)1/p

<∞.

Note that Lr(R) is contained in lp(L1)(R) for 1 ≤ r ≤ p.
Denote by ũ±(x,E) the unique solutions of (−D2 + V − E)u = 0 that

satisfy ũ±(0, E) = 1 and dũ±
dx

(0, E) = ±i
√
E.

Theorem 1. Let 1 ≤ p < 2, and let V = V1 + V2, where V1 ∈ lp(L1)(R), V2

is bounded with A = lim supx→∞ V2(x), and V ′
2 ∈ lp(L1)(R). Then for almost

every E ∈]A,∞[, there exist two solutions of (−D2 + V − E)u = 0 with the
WKB-type asymptotic behavior

u±(x,E) − E√
E − V2(x)

e
±i

R x
0 (
√
E−V2(y)− V1(y)

2
√

E−V2(y)
)dy → 0 as x→ ∞

Moreover ∫ b

a

log(1 + sup
x

|ũ±(x,E)|)dE <∞

for any A < a < b <∞.
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Look at a generalized eigenfunction uE of HV = H0 + V for some fixed
E 6= 0 with sufficient conditions on the potential V . The idea behind the
WKB approximation method is to set uE(x) ∼ eiψ(x) and then either expand
ψ or ψ′ as power series. We thus get equations for the power series and if we
make the assumption that the power series decay fast enough then the last
step is to make the approximation that we can drop all but finitely many
terms from the power series. When V1 = 0 or V2 = 0 in the above theorem
we recover well known WKB approximation formulas. The method is named
after Wentzel, Kramers and Brillouin.

The first half of the next theorem is a direct corollary of the previous
theorem using the results mentioned in the introduction. The second half
will be deduced by using a well known argument that is called the wide
barriers-type argument.

Theorem 2. Consider a half-line operator on L2[0,∞[, −D2 + V −E, with
some self-adjoint boundary condition at the origin. Assume that V = V1 +V2

where V1 ∈ lp(L1)[0,∞[, V2 is bounded with A = lim supx→∞ V2(x) and V ′
2 ∈

lp(L1)[0,∞[ for some 1 ≤ p < 2. Then ]A,∞[ is an essential support of
the absolutely continuous spectrum of the operator −D2 + V . Moreover, the
essential spectrum coincides with [A1,∞], where A1 = lim infx→∞ V2(x), and
is purely singular on [A1, A].

These results are rather sharp in the sense that there exists V ∈ Lp,
V ′ ∈ Lr for any p > 2, r > 2 such that HV = −D2 + V has purely singular
spectrum on R+ and thus has a spectrum that does not resemble the one
that H0, the free Hamiltonian, has.

The last theorem shows that the potential can depend on the energy.
This is not directly related to spectral theory but is rather a natural ODE
application.

Theorem 3. Suppose that 1 ≤ p < 2 and that W (x,E) is real-valued and
that

∂jW

∂Ej
∈ Lp(R)

uniformly in E ∈ J for j = 0, 1. Suppose further that the derivatives ∂jW
∂Ej

for j = 2, 3 satisfy

|∂jE
∫ x

y

W (t, E)dt| = o(|x− y|)
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as x, y → ∞ uniformly in E ∈ J . Then for almost every E ∈ J there exist
linearly independent, bounded solutions u±(x,E) of

u′′(x) = W (x,E) −Eu

with WKB asymptotic behavior as x→ ∞.

15.3 Idea of proof of the main theorem

We rewrite the equation (−D2 + V − E)u = 0 as a system

y′ =

(
0 1

V − E 0

)
y

with y =

(
u
u′

)
, E > A. Applying some transformations a couple of times

and iterating the system starting from the vector

(
1
0

)
we obtain a series

representation for one of the solutions of the original equation. This se-
ries representation immediately yields our result provided that we can show
summability of the following infinite series

∞∑

n=0

B2n((V1, V
′
2); . . . ; (V1, V

′
2))(x,E) and

∞∑

n=1

B2n−1((V1, V
′
2); . . . ; (V1, V

′
2))(x,E)

where Bn is a multilinear operator. To define Bn we first need to define
ξ(x,E) =

√
E − V2, then we define the kernels

S1(x,E) = − i

2ξ(x,E)
e−i

R x
0 (2ξ(t,E)− V1(t)

ξ(t,E)
)dt

S2(x,E) = − 1

4ξ(x,E)2
e−i

R x
0

(2ξ(t,E)− V1(t)
ξ(t,E)

)dt

and the corresponding integral operators

(S1f)(E) =

∫ x

0

S1(x,E)f(x)dx and (S2f)(E) =

∫ x

0

S2(x,E)f(x)dx.

The multilinear operators are then defined as
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Bn((f
1
1 , f

2
1 ); (f 1

2 , f
2
2 ); . . . ; (f 1

n, f
2
n))(x,E)

=

∫ ∞

x

∫ ∞

t1

. . .

∫ ∞

tn−1

n∏

j=1

[S̃1(tj , E)f 1
j (tj) + S̃2(tj , E)f 2

j (tj)]dtj

where S̃i(tj , E) is equal to S̄i(tj , E) if n−j is even and to Si(tj, E) otherwise.
The main goal in the proof is then to get good estimates on these multilinear
operators.
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16 Lp estimates on the bilinear Hilbert trans-

form

after M. Lacey and C. Thiele [3]
A summary written by Maria Carmen Reguera

Abstract

We summarize the proof of the Lp boundedness of the bilinear
Hilbert transform restricted to the local L2 case given by M. Lacey
and C. Thiele in [3]

16.1 Introduction

The bilinear Hilbert transform, defined for f, g ∈ S as

H(f, g)(x) = p.v.

∫

R

f(x+ y)g(x− y)
dy

y
,

was first considered by A.P. Calderón in the 60’s when studying boundedness
of Cauchy integrals along curves. He conjectured that H : L2 × L2 7−→ L1,
it wasn’t until the late 90’s that this conjecture was proven by M. Lacey and
C. Thiele, see [3], [4]. Their main theorem states,

Theorem 1. Let H be the bilinear Hilbert transform, then H extends to a
bounded operator on Lp1 × Lp2 7−→ Lp for

1

p1
+

1

p2
=

1

p
1 < p1, p2 ≤ ∞ 2/3 < p <∞.

In this paper we are only concerned with the case 2 < p1, p2 < ∞ and
1 < p < 2, this is the so called local L2 case. It is significant that boundedness
of this operator is unknown for 1/2 < p < 2/3.

16.2 Time-frequency analysis: The Model Sum

The bilinear Hilbert transform satisfies the following symmetries: it is trans-
lation invariant, dilation invariant and modulation invariant. A decomposi-
tion of this operator has to be consistent with those symmetries, it is here
that the time-frequency analysis comes into play. Let us consider the tri-
linear form Γ(f1, f2, f3) := 〈H(f1, f2), f3〉. Since the distribution p.v.1

t
is a
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combination of δ0 and k(t) where k̂(t) = 1(0,∞), and the result is trivial for
δ0, we can reduce the problem to study boundedness for

T (f1, f2)(x) =

∫

R

f1(x+ y)f2(x− y)k(y)dy.

We decompose k(t) =
∑

k ψk, ψk = 2−k/2ψ(2−kt)where ψ is an L2 normalized

Schwartz function, ψ̂ supported on [1/2, 2]. Moreover, heuristically at each
scale k, we have

fj =
∑

|Is|=2k

〈fj , φs〉φs,

where φs(x) := |Is|−1/2φ(x−c(Is)|Is| )e2πic(ws)x, c(Is) is the center of Is, and c(ws)

is the center of ws, ws an interval of lenght 2−k. φ is again a Schwartz function

normalized in L2, φ̂ supported in [−1/2, 1/2] and such that
∑

l∈Z

∣∣∣φ̂(ξ − l)
∣∣∣
2

=

C.
Our trilinear form looks like

∑

k

∑

s1,s2,s3,|Isj |=2k

3∏

j=1

〈fj, φsj〉〈T (φs1, φs2), φs3〉,

actually it can be reduced further, if φ̂s1 is supported in ws1, the supports
of φ̂s2 and φ̂s3 are essentially localized on ws + 2−k and ws + c(ws) + 2−k

respectively. Moreover since φs are Schwartz functions highly localized on
Is, we can assume that Isi = Is for all i = 1, 2, 3. These considerations
allow us to diagonalize the triple sum in si, and the relationship between the
supports in frequency will lead to the use of the so called tri-tiles.

Definition 2. A collection S of rectangles s = Is × ωs are called tiles if
|s| ≤ |s′| ≤ 4|s| for all rectangles s, s′ ∈ S, moreover I(S) and ω(S) are
grids. A collection of tiles S are called tri-tiles if each s = Is × ωs ∈ S is a
union of three tiles sj = Is × ωsj, j = 1, 2, 3 satisfying that wsj ∩ wsi = ∅ if
i 6= j, for all s ∈ S, ξ1 < ξ2 < ξ3 for all ξj ∈ wsj and w1(S) ∪ w2(S) ∪ w3(S)
is a grid.

Definition 3. A collection of functions {φsj : s ∈ S, 1 ≤ j ≤ 3} are
adapted to the collection of tri-tiles S if for all s ∈ S and all j, ||φsj||L2 ≤ 1
and
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1. if wsj ∩ ws′j = ∅ then 〈φsj, φs′j〉 = 0,

2. |φsj(x)| ≤ C0√
|Is|

(
1 + |x−c(Is)|

|Is|

)−10

.

By previous considerations, we can argue that the study of the trilinear
form Γ can be reduced to the study of the following model sum,

Λ(f1, f2, f3) :=
∑

s∈S

1√
|Is|

3∏

j=1

〈fj , φsj〉, (1)

where S is a collection of tri-tiles.
Let S be a finite collection of tri-tiles, f1, f2, f3 ∈ S, with ||fi||pi

= 1 and
1/p1 + 1/p2 + 1/p3 = 1, we want to prove

Λ(f1, f2, f3) ≤ ||f1||Lp1 ||f2||Lp2 ||f3||Lp3 (2)

We are actually going to consider a slightly worse operator,

LS(f1, f2, f3) :=
∑

s∈S
|Is|−3/2

3∏

i=1

〈fi, φsi〉1Is(x). (3)

The L1 norm of this operator is equal to the trilinear form in (1). Using
the fact that the operator L is dilation invariant and interpolation, it is
enough to prove that for all r1, r2, r3 with |ri − pi| < ǫ and all functions
f1, f2, f3 ∈ S, with ||fi||ri = 1, there exist t > 1 and a set E such that
|E| ≤ C and

||LS(f1, f2, f3)||Lt(Ec) ≤ C.

16.3 Main Lemma

We consider the following ordering of the tiles, s≪ s′ if Is ⊂ Is′ and ws′ ⊂ ws.
We say that a collection of tri-tiles T is a tree with top t if s ≪ t for every
s ∈ T . We also say that T is an i-tree if wt ⊂ wsi for every s ∈ T . Notice that
for any i-tree T , Isj×wsj∩Is′j×ws′j = ∅ for all s ∈ T , j 6= i. The importance
of considering i-trees comes from the similarity of the trilinear form with a
paraproduct, we have two terms with cancellation and one without it,

∑

s∈T
|Is|−1/2

3∏

j=1

〈fj, φsj〉 ≤ sup
s∈T

〈fi, φsi〉
|Is|−1/2

∏

j 6=i

(∑

s∈T
|〈fj, φsj〉|2

)1/2

. (4)
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The following lemma is the main result of the paper,

Lemma 4. Let S be a collection of tri-tiles and let LS as in (3). Then there
exist K,C > 0, t > 1, Sk,i,j collection of i-trees T for k ≥ 0, 1 ≤ i, j ≤ 3 and
S0 collection of tiles such that the following properties hold:

S = S0 ∪
⋃

k≥0

3⋃

i,j=1

Sk,i,j,

∣∣∣∣∣
⋃

s∈S0

Is

∣∣∣∣∣ ≤ K,

we have the following pointwise estimate for the LS function,

∑

s∈T
LT (x) ≤ 2−k/r+kǫ ∀T : t ∈ S∗

k , (5)

where 1
r1

+ 1
r2

+ 1
r3

= 1
r

and S∗
k stands for the set of tops of maximal trees in

Sk. Moreover, if we define Nk,i,j =
∑

t∈S∗
k,i,j

1It to be the counting function,

then
‖Nk,i,j‖t ≤ K2k/t+kCǫ (6)

Remark 5. For the proof of the lemma we will use t = 1
2
min pi − η, where

η is sufficiently small. The proof of this lemma immediately gives the proof
of the main theorem. For that, we notice that r is essentially 1 and t is fixed
and essentially p/2, what makes the sum in k be finite.

Next we indicate some of the ideas in the proof, for a complete proof
we refer the reader to [3]. An efficient organization of the tiles that will
allow us to exploit orthogonality is the key ingredient of this proof. Let us
consider the case i 6= j, the case i = j is slighty different but follows the
same philosophy. The sets Sk,i,j are collections of i-trees that satisfy upper
and lower bounds, depending on k, for

∆(T, fj) :=

(
1

|It|
∑

s∈T
|〈fj, φsj〉|2

)1/2

. (7)

This collection of trees is defined inductively in a way that would provide an
extra disjointness condition among trees, we are talking about the following,
for s, s′ ∈ Sk,i,j, with some exceptions,

If wsj ( ws′j , then It ∩ Is′ = ∅, (8)
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where t is the top of the tree T that s belongs to. Collections with large
∆(T, fj) will define S0. The bound in (5) comes from the estimate for each
tree (4), the above mentioned upper bounds and a John-Nirenberg type ar-
gument. The estimate for the counting function uses the lower bounds and
extra orthogonality as defined in (8).
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17 On certain elementary trilinear operators

after Michael Christ [1]
A summary written by Prabath Silva

Abstract

Here we summarize [1], which gives both positive and negative
results on the boundedness of a trilinear operator.

17.1 Introduction

Here we consider the family of trilinear operators

T (f1, f2, f3)(x) =

∫

|t|≤1

3∏

j=1

fj(Sj(x, t))dt (1)

where fj are locally integrable functions on Rd and Sj : Rd+d → Rd are
surjective linear mappings.

We exclude degenerated cases by assuming the mappings (x, t) 7→ (Si(x, t)
, Sj(x, t)) are invertible for i, j = 0, 1, 2, 3; i 6= j where S0(x, t) = x.

There is a trivial range for T coming from Fubini’s Theorem. We have T
maps L1 ⊗ L1 ⊗ L∞ to L1 and L1 ⊗ L∞ ⊗ L∞ to L∞. By using multilinear
interpolation we get that T maps Lp ⊗ Lp ⊗ Lp to Lq where 3/2 ≤ p ≤ 3
and 1/q + 1 = 1/p. When we consider the situation 1 < p < 3/2 the
interconnections between {Sj}j=1,2,3 come in to play.

Definition 1. Suppose {Sj} is non degenerate. The collection of linear maps
Sj : j = 0, 1, 2, 3 is called rationally commensurate if there exist linear auto-
morphisms hj of Rd such that the vector subspace of endomorphisms of R2d

generated by the Q linear combinations of {hj◦Sj : 0 ≤ j ≤ 3} has dimension
2 over Q.

In the one dimensional case, T can be reduced to the canonical forms
T (f, g, h)(x) =

∫
f(x+ t)g(x− t)h(t)dt and T (f, g, h)(x) =

∫
f(x+ t)g(x−

t)h(x− θt)dt. The first form is rational commensurate, and the second form
is rational commensurate if and only if θ is rational.
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17.2 Main Theorem

Theorem 2. Suppose that {Sj} is nondegenerate.
If {Sj} is rationally commensurate, then there exist p < 3/2 such that the
trilinear operator ∫

Rd

3∏

j=1

fj(Sj(x, t))dt (2)

maps Lp ⊗ Lp ⊗ Lp boundedly to Lq, where 1 + q−1 = 3p−1

If {Sj} is not rationally commensurate, then for any p < 3/2, there exist
nonnegative functions fj ∈ Lp and a set E ⊂ Rd of positive measure such
that T (f1, f2, f3)(x) = +∞ for all x ∈ E.

Given p < 3/2, there exist rationally commensurate {Sj}, non negative
functions fj ∈ Lp,and a set E as above, such that T (f1, f2, f3)(x) = +∞ for
all x ∈ E.

For any {Sj} there exist p > 1, functions fj ∈ Lp and a set E as above,
such that T (f1, f2, f3)(x) = +∞ for all x ∈ E.

We prove the boundedness of a larger operator (2) than T . From this
the boundedness of T as a map from Lp ⊗Lp⊗Lp to Lq is immediate.When
we get the boundedness for some 1 < p0 < 3/2 then by interpolation we get
boundedness for p0 ≤ p ≤ 3/2, but getting the smaller such p0 for a given
{Sj}j=1,2,3 is related to getting better sums difference estimates [5] as seen in
the discrete analogues section below. The last two clams in the theorem give
that for the rational commensurate case p cannot get below 1 and it can be
arbitrarily close to 3/2.

In this summery we consider the one dimension case and it can be extend
to higher dimensions [1].

17.3 Irrational case

In this case T (f, g, h)(x) =
∫
|t|≤1

f(x + t)g(x − t)h(x − θt)dt where θ is

irrational. Since θ is irrational we have [3] rational approximations such that
|1−θ
1+θ

− pn

qn
| ≤ 1

q2n
. Write N for qn and set δ = CN−2 for sufficiently small C.

Consider the sets
F =

⋃p
j=1{x : |x− jp−1| < δ},

G =
⋃q
k=1{x : |x− kq−1| < δ},

H =
⋃p+q
l=1 {x : |x− ly| < C2δ}, where y = (1 − θ)/2p
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Set f, g, h to be the characteristic functions of sets E,F,G respectively.
Then each function has ‖.‖p ∼ N−1/p.

When x + t ∼ jp−1 and x − t ∼ kq−1, we have x − θt ∼ j 1−θ
2p

+ k 1+θ
2q

.

Taking y = (1− θ)/2p ∼ (1 + θ)/2q allows us to handle pq possible values of
x− θt by a function h with only p+ q bumps. We have

T (f, g, h)(x)/‖f‖p‖g‖p‖h‖p & N ( 3
p
−2) (3)

for x ∈ EN where EN is a subset of a bounded set with measure bounded be-
low by constant. Having noticed that when p < 3/2 the exponent is positive,
take f =

∑
ν cνfν and similarly for g and h. By choosing cν appropriately

get T (f, g, h)(x) = +∞ for a set with positive measure.

17.4 Rational case

In this case we prove boundedness of the operator (2). Here the integral is
taken over Rd rather than |t| ≤ 1. This operator (2) maps L2 ⊗ L2 ⊗ L1 to
L1, which follows easily by changing variables and then applying Holder’s
inequality. Similarly we get the other two permutations; then using interpo-
lation we get boundedness from L3/2 ⊗ L3/2 ⊗ L3/2 to L1.

By interpolation, obtaining a restricted weak type estimate λq0|E| ≤
{|A|.|B|.|C|}

q0
p0 is enough get the boundedness for p < 3/2. Here A,B,C

are measurable subsets of R and E = {x : T (χA, χB, χC)(x) > λ} . Further
it is enough to have

λ1−δ|E| ≤ |A|r1|B|r2|C|s

for some δ ∈ (0, 1) and 0 < r1, r2, s, since we can use estimates we get from
boundedness from L2 ⊗ L2 ⊗ L1 to L1.

The rest of the proof uses a continuous version of the method used in [5].

17.5 Threshold exponent

Let 1 < p < 3/2 and θ = r/s be a rational number. Consider the following
sets,

A = {
K∑

n=1

an(rs)
−n + z : an = 0, r, 2r, . . . , (s− 1)r; |z| ≤ 2(rs)−K}
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B = {
K∑

n=1

bn(rs)
−n + z : bn = 0, s, 2s, . . . , (r − 1)s; |z| ≤ 2(rs)−K}

This choice allows us to get a bound for the measure of C = r−1A + s−1B
that is the same size as A and B. i.e. |A| . r−K , |B| . s−Kand |C| .

(r + s)K(rs)−K . This gives

T (χA, χB, χC)(x)

|A|1/p|B|1/p|C|1/p & r(−K+2K/p)s(−K+2K/p)(r + s)−K/p (4)

for x in a measurable subset of a bounded set with measure bounded
below by a constant.

Now for p < 3/2 choose r, s big enough and close to each other so that
the right hand side of (4) & (α)K , where α > 1. Then use the method used
in the irrational case to conclude the proof.

Next fix r, s and choose p close to 1 so that the right hand side of (4) &

(β)K , where β > 1. Again use the method used in the irrational case to
conclude the proof.

17.6 Discrete analogoues

In the proof of the rational case we used a continuous analogue of [5]. In this
section we look at the equivalent discrete versions of the main theorem.

Theorem 3. Suppose that (m, k), (m′, k′) ∈ Z2 and no two vectors (1, 0), (0, 1),
(m, k), (m′, k′) are linearly dependent. Then there exist p < 3/2 and K <∞,
depending only on m, k,m′, k′, such that for any trosion-free Abelian group
G, for any finite subsets A,B,C ⊂ G, the multiplicity function

µ(x) = |{(a, b, c) ∈ A×B × C : c = m′a + k′b, x = ma + kb}|

satisfies for every λ > 0

∑

x∈G

µ(x)q ≤ K|A|p/q|B|p/q|C|p/q

where 1 + q−1 = 3p−1

This easily follows from first reducing to Z and then using Theorem 2 for
functions fA =

∑
x∈A[x − 1, x + 1]. We have the following corollary which

extends the sums difference in [5] to integer combinations as seen below.
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Corollary 4. There exists δ > 0, depending on m,k, such that for any
trosion-free Abelian group G, any positive integer N, any finite subsets A,B,C ⊂
G such that |A|, |B|, |C| ≤ N,

|{ma+ kb : (a, b,m′a+ k′b) ∈ A× B × C}| ≤ N2−δ.
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18 Bilinear ergodic averages

after J. Bourgain in [1] and C. Demeter in [2]
A summary written by Betsy Stovall

Abstract

We discuss the almost sure convergence of certain bilinear averages
associated to ergodic dynamical systems.

18.1 Introduction

Let T be an ergodic transformation acting on the probability space (Ω,B, µ).
One of the most important theorems in ergodic theory states that, given any
h ∈ L1(Ω, µ), we have

lim
N→∞

1

N

N∑

n=1

h(T nω) =

∫

Ω

f dµ, almost surely in Ω. (1)

In [1], Bourgain generalizes this theorem to cover bilinear averages by proving
the following.

Theorem 1. Let (Ω,B, µ) be a probability space acted on by the ergodic
transformation T . Then for any f, g ∈ L∞(µ), the averages

1

N

N∑

n=1

f(T nω)g(T−nω) (2)

converge almost surely.

The methods used in [1] generalize to the case where T and T−1 in (2)
are replaced by arbitrary powers of T .

In this summary, we will sketch the proof of Theorem 1, largely following
the outline in [2].

18.2 Step one: Transfer to a problem on the integers

The bulk of the proof of Theorem 1 involves working with functions defined
on the integers. In this section, we explain how that reduction is carried out.
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To begin, it suffices to prove the theorem in the case when g is orthogonal
to the eigenfunctions of the operator g 7→ g ◦ T−1. Under this hypothesis,
the uniform Wiener-Wintner theorem implies that

lim
N→∞

sup
λ∈T

| 1

N

N∑

n=1

g(T nω)einλ| = 0, almost surely in Ω. (3)

The ergodic theorem also holds, and so in proving Theorem 1, it suffices to
consider those ω ∈ Ω such that (1) holds for certain L1 functions h and (3)
also holds. With such a nice ω fixed, we consider the ℓ∞(Z) functions

f(n) := f(T nω) g(n) := g(T nω).

We now define some notation relevant to the finite problem. Integers
M0 < N(M0) ≪ J will be given. For each x ∈ [−J, J ], we are also given an
integer Nx, M0 ≤ Nx ≤ N(M0). We note that

1

2Nx

∑

[−Nx,Nx]

g(x−m)f(x+m) =

∫

T

f̂(λ)Px(λ)e2ixλ dλ,

where

Px(λ) =
1

|Ix|
∑

n∈Ix
g(n)e−inλ, Ix = x+ [−Nx, Nx].

We let

HM0(x) := |
∫

T

f̂(λ)Px(λ)e2ixλ dλ|,

and note that by our assumption on ω, for each δ0 > 0, the set

EM0Jδ0 := {x ∈ [−J, J ] : sup
λ∈T

|Px(λ)| < δ0}

satisfies
1

2J
|EM0Jδ0 | → 1 as M0 → ∞.

With the notation as above, it is then possible to prove that Theorem 1
follows from the following theorem (which is stated in [2]).

Theorem 2. Let M0 < N(M0) ≪ J be integers, and let f, g be 1-bounded
functions on the interval [−2J, 2J ] ⊂ Z. Assume that

1

2J
|EM0Jδ0| ≥ 1 − δ0 (4)
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Then we have that

1

2J

∑

x∈EM0Jδ0

HM0(x) ≤ ε(δ0), (5)

where ε(δ0), which depends only on δ0, tends to zero with δ0.

We remark here that once the transference has been carried out, further
reducing to the consideration of dyadic integers adds little extra difficulty.
Because of this we will henceforth assume that all integers are equal to powers
of two.

The transference having been completed, the main part of the proof be-
gins.

18.3 Step two: Reduction to certain cardinality bounds

In this step, we reduce the proof of (5) to a bound on the cardinality of
certain subsets of the integers.

To begin, we dyadically decompose the range of the function Px, and
consider instead functions Pxδ, which are supported where δ

2
≤ |Px| ≤ 2δ

and which satisfy ∑

δ dyadic

Pxδ = Px.

A nice (and important) fact is that this decomposition can be done in such a
way that |P ′

xδ| . |P ′
x|. In addition, because we are only interested in integers

x ∈ EM0Jδ0, the sum may be taken over δ . δ0.
The proof of Theorem 2 then reduces to proving that for each δ . δ0,

1

J
|{x ∈ [−J, J ] : Oδ(x) := |

∫

T

f̂(λ)Px,δ(λ)e2ixλ dλ| > (log
1

δ
)−ε}| . δε/2 (6)

(to see the relevance, sum over dyadic δ . δ0).
Of course, reducing to fixed size in this way will complicate the support

of Pxδ, but we will gloss over this issue in the summary.

18.4 Step three: Conditional proofs of the cardinality
bounds

The rest of the proof breaks into two parts. In this step, it is shown that if
the bound (6) holds when we exclude certain bad integers x, then the bound
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(6) holds with no restrictions. In the next section, we will describe the final
step, which is to show that the bounds do hold when we exclude certain bad
integers.

The ultimate goal of this step is to prove the following proposition from
[2].

Proposition 3. Suppose that there exists ε > 0 such that whenever I ⊂
[−J, J ] is a dyadic interval and FI ⊂ T is a ∆-separated set (∆ > 0) with
cardinality #FI . δ−2−3ε, we have the bound

|{x : Ix ⊂ I, N−1
x ≤ ∆

16
, ‖px,δ‖L2(T\(FI+ωx0)) ≤ δε/2|Ix|−1/2, (7)

Oδ(x) & (log δ−1)−2}| . δCε|I|, (8)

where ω0x = [−4(Nx)
−1, 4(Nx)

−1] under the identification of T with [−1/2, 1/2].
Then (6) holds.

We want to show that bounding the cardinality of the sets in the propo-
sition lets us bound the cardinality of the set in (6). Thus the main thing is
to prove that the restriction

‖px,δ‖L2(T\(FI+ωx0)) ≤ δε/2|Ix|−1/2 (9)

does not exclude too many integers x, when we take the union over all of the
possible sets FI .

Why might such a thing be true? We’ll concentrate on this in the case
when the assumption of ∆-separation of the set FI is dropped. Note that
without the restriction to ∆-separated FI , the hypothesis of the proposition
is stronger (we have to prove that something holds for more sets FI), and so
the proposition is weaker and our job easier.

First, we discuss why it should be possible to find sets FI(x) such that

‖px,δ‖L2(T\(FI (x)+ωx0)) ≤ δε/2|Ix|−1/2.

By the construction of the px,δ and our assumption that they are supported
on the intervals Ix, we have that

‖px,δ‖L2(T) ≈
∑

λ∈F
‖px,δ‖L2(λ+ωx,0),
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where F is a finite set such that |px,δ| ∼ δ on much of λ + ωx,0 for λ ∈ F .
Thus, by removing such intervals from T, we can decrease the L2 norm of
px,δ.

In order to remove the dependence of the sets FI on the integer x, some-
thing else is needed to remove bad points. This is where a time-frequency
localization comes in. In this case, the important objects are tiles Is × ωs
where Is ⊂ Z and ωs ⊂ T are dyadic intervals which are dual to each other
in the sense that #Is ∼ |ωs|−1. These tiles have a natural partial ordering,
under which s ≤ s′ if Is ⊂ Is′ and ωs ⊃ ωs′. Thus s and s′ are comparable
if and only if Is ∩ Is′ and ωs ∩ ωs′ both have nonempty interior. The proof
proceeds by initially working on maximal tiles (from some finite family), and
refining as needed.

18.5 Step four: Bounding a certain maximal function

Our ultimate goal is to show that the hypothesis of Proposition 3 holds,
i.e., to prove the bound (7) for I ⊂ [−J, J ] a dyadic interval and FI ⊂ T a
∆-separated set with cardinality #FI . δ−2−3ε.

We let the elements of FI be enumerated by λi, 1 ≤ i ≤ L. Roughly,
condition (9) means that we only have to examine the contribution to Oδ(x)
coming from points λ near one of the λi. We have already mentioned that
p′x,δ is pretty small, and so for λ near λi, px,δ(λi) approximates px,δ(λ). The
separation of the λi allows us to apply Bernstein’s inequality, and so it is
possible to show that

Oδ(x) = |
∑

λi∈FI

∫

T

f̂I(λ)px,δ(λi)e
iλixαδ−εNx

(λ− λi)e
ixλ dλ| + small errors.

(10)

Here α is a C∞ cutoff function, αR(λ) = α(Rλ), and fI is the restriction of
f to the interval I.

Via a bit of work, it is possible to reduce the bound for the main term in
(10) to a bound for a certain maximal function, roughly

Mf(x) := sup
∆−1.N.|I|

|
∫

T

f̂(λ)

L∑

l=1

eiλlxp̃x,N,δ(λl)αN(λ− λl)e
ixλ dλ|,
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where

p̃x,N,δ(λ) := p̃x,N(λ)χ|px,N |∼δ(λ)

p̃x,N(λ) :=
1

N

∑

j∈DN (x)

g(j)e−ijλ.

Here, DN(x) is the dyadic interval of length N centered at x. In particular,
the main theorem follows from the bound ‖MfI‖ℓ2(I) .β δ

1/3−βLβ|I| (this is
essentially the content of a theorem stated in [2]).

The proof of the bound for the maximal function can be simplified by
expressing p̃x,N,δ(λl) = wx,N,lσx,N,l, where w and σ are constant in x on
dyadic intervals of length N (because DN is constant on such intervals) and
satisfy

‖wx,N,l‖ℓ2(l) = O(1) ‖σx,N,l‖ℓ∞(l) ≤ δ.

Furthermore, it can be shown that the sets

Λx := {(wx,N,l)1≤l≤L : ∆−1 . N . |I|}

can be covered by a small number of ℓ2([0, L]) balls of radius τ for any
τ > 0 (the actual bound is quantitative in τ), though the proof of this fact
is somewhat involved.
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19 On a Conjecture of E. M. Stein on the

Hilbert Transform on Vector Fields

after M. Lacey and X. Li [7]
A summary of Part I written by Po-Lam Yung

Abstract

We describe a new kind of maximal function associated to a Lip-
schitz vector field on the plane R2, and show that it is of weak type
(2,2) with a quantitative bound on its norm. We also describe a re-
lated conjecture on the Lp boundedness (p < 2) of a smaller maximal
function, and verify it for vector fields that are real analytic.

19.1 Introduction

Let v be a Lipschitz unit vector field on the plane R2. The goal of the paper
of Lacey and Li is to study the truncated Hilbert transforms associated to
this vector field, namely

Hv,εf(x) = p.v.

∫ ε

−ε
f(x− tv(x))

dt

t

where ε is a positive number. The authors attributed to E.M. Stein the
following conjecture on Hv,ε:

Conjecture 1. There is an absolute constant K > 0 such that if ε =
(K‖v‖Lip)

−1, then Hv,ε is of weak-type (2,2).

To study questions related to this conjecture, Lacey and Li introduced a
new kind of Kekeya maximal function associated to a Lipschitz unit vector
field by taking the maximal averages of a function over a suitable collection
of rectangles as follows. Given a rectangle R in the plane, let e be a unit
vector parallel to the longer side of R, and we shall think of it as a point on
the unit circle. Let L(R) and W (R) be the lengths of the longer and shorter
sides of R. The interval of uncertainty EX(R) was defined to be the subarc
of the unit circle centered at e and of length W (R)/L(R). The set V (R) was
defined to be the set of points x in R for which v(x) lies in the interval of
uncertainty EX(R). The new Kekeya maximal function will be defined by
taking maximal averages over rectangles R for which V (R) occupies a fixed
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positive fraction of R (or in other words, where R ‘aligns well’ with the given
vector field v), and where L(R) is small! . More precisely, for 0 < δ < 1, the
Lipschitz Kekeya maximal function associated to v was defined by

Mv,δf(x) = sup
R∋x, |V (R)|≥δ|R|
L(R)≤(100‖v‖Lip)−1

1

|R|

∫

R

|f(y)|dy.

Here |R| denote the Lebesgue measure of R.
One of the main results in their paper is the following:

Theorem 2. If v is a Lipschitz unit vector field on R2 and δ > 0, then Mv,δ

is of weak type (2,2), with norm bounded by Cδ−
1
2 .

Lacey and Li also studied in this paper a variant of the Lipschitz Kekeya
maximal function that averages only over rectangles of a given range of
widths. More precisely, for 0 < δ < 1 and 0 < w < 1

100
‖v‖Lip, they de-

fined

Mv,δ,wf(x) = sup
R∋x, |V (R)|≥δ|R|
w≤W (R)≤2w

L(R)≤(100‖v‖Lip)−1

1

|R|

∫

R

|f(y)|dy.

They conjectured that

Conjecture 3. There exists 1 < p < 2 and some finite N such that for all
Lipschitz unit vector fields v in R2, all 0 < δ < 1 and all 0 < w < 1

100
‖v‖Lip,

the maximal function Mv,δ,w is of weak type (p, p) with norm at most Cδ−N .

They verified the conjecture for a class of vector fields that includes the
real analytic ones, and proved in particular the following theorem:

Theorem 4. Let v be a real analytic unit vector field on R2. Suppose ε0 is
sufficiently small. Then for all 0 < δ < 1 and all 0 < w < ε0, Mv,δ,w is of
weak type (1,1) with norm bounded by Cδ−1(1 + log δ−1).

This concludes the summary of the first part of the paper. In the second
part of the paper, Lacey and Li went on to prove the following theorem about
the truncated Hilbert transforms associated to vector fields.

Theorem 5. Assume v is a Lipschitz unit vector field on R2 for which the
conclusion of the Conjecture 3 holds. Then Hv,ε ◦ PN maps L2 to L2 with
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norm . 1 whenever N > ‖v‖−1
Lip and ε = (K‖v‖Lip)

−1, where PN is the
Littlewood-Paley projection onto frequency |ξ| ≃ N . Furthermore, if in ad-
dition v ∈ C1+η for some η > 0, then Hv,ε maps L2 to L2, with norm
. (1 + log ‖v‖C1+η)2, whenever ε = (K‖v‖C1+η)−1.

In particular these hold for all real analytic unit vector fields v. This will
be the subject of the second talk on this paper by Kovac.

19.2 Backgrounds

The Hilbert transform associated to a unit vector field is a kind of Radon
transform, and these have been extensively studied by various authors. Other
versions of maximal functions, where the maximal averages are taken over
very thin sets or over lower dimensional submanifolds, have also been in-
vestigated in the literature. Listed below are some of the relevant earlier
papers.

1. Christ, Nagel, Wainger and Stein [3] proved the boundedness of a
general class of maximal and singular Radon transforms on Lploc(R

n),
1 < p < ∞. Note there they were working in the smooth setting inte-
grating over general submanifolds (not just over straight line segments),
and in this general formulation some kind of curvature conditions are
necessary (contrary to Conjecture 1).

2. Strömberg [9] proved a quantitative bound on L2 for maximal functions
associated to rectangles pointing in N uniformly distributed directions
in R2, while A. Córdoba and R. Fefferman [4] proved the boundedness
of an analogous maximal function for lacunary directions on L2(R2).
Their methods relied on a covering argument. Nagel, Stein and Wainger
[8] later extended the latter result to Lp(R2), p > 1, using Fourier
analysis. See also Katz [5], where he proved a quantitative bound for
the maximal function associated to an arbitrary set of N directions in
R2.

3. In [9], Strömberg also obtained, as an easy consequence of the result of
his stated above, quantitative bounds of the maximal function

Mδf(x) = sup
x∈R, |EX(R)|≥δ

1

|R|

∫

R

|f(y)|dy
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on L2 in dimension 2. See also the work of Bourgain [2], where he ob-
tained quantitative bounds for an analogous Nikodym maximal func-
tion in dimensions n ≥ 3 when 2 ≤ p ≤ p0(n) for some 2 < p0(n) < n.
The Kekeya conjecture is the conjecture that the Nikodym maximal
function maps Lp to Lp on Rn with norm . δ−ε when p ≥ n, n ≥ 3,
and this remains an outstanding open problem in harmonic analysis.

In view of Strömberg’s result, it is quite remarkable that the Lipschitz
Kekeya maximal function is of weak-type (2,2) as in Theorem 2, since
in the definition of the Lipschitz Kekeya maximal function rectangles
of arbitarily small eccentricity is allowed (as long as they align substan-
tially with the given vector field and are not too long).

4. Katz [6] proved that discretized maximal functions associated to a Lip-
schitz vector field are of weak-type (2,2) in R2, with a quantitative
bound (depending on the number N of uniformly distributed discrete
directions used to approximate the given Lipschitz vector field) that is
better than the one in [5].

5. Bourgain [1] proved, among other things, the boundedness on L2
loc of

the following maximal function associated to real analytic vector fields
v in R2:

Mv,af(x) = sup
0<r≤a

1

r

∫ r

0

|f(x+ tv(x))|dt.

Here a is any sufficiently small parameter. Compare with Theorem 4.

It should be noted that the construction of the Besicovitch set in 2 dimen-
sions shows that the truncated Hilbert transform Hv,ε cannot be of weak-type
(2,2) for vector fields that are only Cα for some α < 1. Furthermore, if we
had ‖Hv,1‖L2→L2 . 1 for all C2 vector fields v with ‖v‖C2 ≤ 1, then it can be
deduced from this that Carleson’s maximal operator is bounded on L2(R).

19.3 Sketch of Proofs

There have been two main ways to prove boundedness of maximal operators.
One is by using covering lemmas (as in Córdoba-Fefferman [4]), the other is
by using Fourier analysis (to exploit the notions of curvature using oscillatory
integrals, and orthogonality using square functions, as in Christ-Nagel-Stein-
Wainger [3]). In this paper, Lacey and Li took the former approach.

To prove Theorem 2, the key covering lemma is the following:
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Lemma 6. Let R be any finite collection of rectangles satisfying L(R) ≤
(100‖v‖Lip)

−1 and V (R) ≥ δ|R| for all R ∈ R. Then there is a subcollection
R′ of R such that

∫
(
∑

R∈R′

χR)2 . δ−1
∑

R∈R′

|R| and

∣∣∣∣∣
⋃

R∈R
R

∣∣∣∣∣ .
∑

R∈R′

|R|.

The proof of this lemma is long. Let’s just say in brief that the hardest
part is in choosing R′ correctly and in estimating

∫
(
∑

R∈R′

χR)2 =
∑

R∈R′

|R| +
∑

ρ,R∈R′, ρ6=R
|ρ ∩R|.

The latter involved a case-by-case analysis of the areas of ρ∩R that appear
in the second term, and a careful estimate of their overlaps. Two maximal
functions were exploited in this connection: the ordinary maximal function
associated to squares (using the key observation of Strömberg [9]) and a
maximal function associated to a fixed set of uniformly distributed directions.

To prove Theorem 4, the following covering lemma was used instead.

Lemma 7. Let v be a real-analytic vector field. Let R be a finite col-
lection of rectangles satisfying L(R) ≤ (100‖v‖Lip)

−1, V (R) ≥ δ|R| and
w ≤ W (R) ≤ 2w for all R ∈ R. Let s ≃ log δ−1. Then we can partition
R into s subcollections such that any 2 rectangles in the same subcollection,
say R1 and R2 where L(R1) ≥ L(R2), satisfy either

L(R2) ≥
1

2
L(R1) or L(R2) ≤ 2−sL(R1).

Write this decomposition as R = R1 ∪ · · · ∪Rs. Then among each Rj, there
is a subcollection R′

j such that at any point, the rectangles in R′
j overlap at

most . δ−1 times, and ∣∣∣∣∣∣
⋃

R∈Rj

R

∣∣∣∣∣∣
.
∑

R∈R′
j

|R|.

In fact Bourgain [1] proved that if a vector field v in R2 is real ana-
lytic, then writing ωx(t) = | det [v(x), v(x+ tv(x))] |, we have the following
estimate: there exists C, c > 0 and a small ε0 > 0 such that

∣∣{t ∈ [−ε, ε] : ωx(t) < τ‖ωx‖L∞[−ε,ε]}
∣∣ ≤ Cτ cε
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for all x ∈ R2, τ ∈ (0, 1) and ε ∈ (0, ε0). It was the latter geometric fact that
enters into the proof of Lemma 7, and Theorem 4 also holds for vector fields
v that satisfy this condition.

References

[1] Bourgain, J., A remark on the maximal function associated to an ana-
lytic vector field, Analysis at Urbana, Vol. I (Urbana, IL, 1986–1987),
1989, 111–132.

[2] Bourgain, J., Besicovitch type maximal operators and applications to
Fourier analysis, Geom. Funct. Anal. 1 (1991), No. 2, 147–187.

[3] Christ, M., Nagel, A., Wainger, S. and Stein, E.M., Singular and max-
imal Radon transforms: analysis and geometry, Ann. of Math. (2) 150
(1999), No. 2, 489–577.
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