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Problem 1. A set X ⊂ Rn is said to be star-shaped at the origin if for every x ∈ X , the line
segment {tx : 0 ≤ t ≤ 1} is also contained in X .

Show that if X is star-shaped at the origin, then X is simply connected. (Hint: look at loops
through the origin).

Suppose X is star-shaped. To show that X is simply connected, it suffices to show that the
fundamental group of X is trivial. It is enough to show that all loops through the origin are
homotopic to a point.

Let γ1 : [0, 1] → X be a loop through the origin in X , so that γ1 is continuous and γ1(0) =
γ1(1) = 0. Let γ0 : [0, 1] → X be the origin path, i.e. γ0(t) = 0 for all 0 ≤ t ≤ 1. We need to
show that γ0 and γ1 are homotopic.

Let F : [0, 1]× [0, 1] → X be the function

F (s, t) = tγ1(s).

Clearly F is continuous (since t and γ1(s) are individually continuous). Also observe that F
does indeed map to X , because γ1(s) is in X and X is star shaped. Finally, we have

F (s, 0) = γ0(s)

F (s, 1) = γ1(s)

F (0, t) = 0

F (1, t) = 0

for all 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1. Thus F is a homotopy from γ0 to γ1 in X , as desired.
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Problem 2. Let K, L be disjoint compact sets in a normal topological space X . Suppose
that f : K → R and g : L → R are bounded and continuous functions on K, L respectively.

Show that there exists a bounded continuous function h : X → R such that h(x) = f(x) for
all x ∈ K and h(x) = g(x) for all x ∈ L.

Since X is normal, X is Hausdorff, and so compact sets are closed. In particular, K and L
are closed and disjoint.

By Urysohn’s lemma, there exists a continuous function φ : K → [0, 1] such that φ(x) = 1
for all x in K, and φ(x) = 0 for all x in L.

Define h by h(x) = f(x)φ(x) + g(x)(1 − φ(x)). Note that h(x) = f(x) for all x ∈ K and
h(x) = g(x) for all x ∈ L. Also, since f , φ, g are all bounded and continuous, h is also
bounded and continuous.
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Problem 3. A topological space X is said to be locally separable if for every point x ∈ X
there is a countable set E in X such that x is in the interior of E.

Show that every compact, locally separable space is separable.

We need to find a countable set F ⊂ X such that F is dense in X .

Let x be any element of X . By hypothesis, there exists a countable set Ex ⊂ X (depending
on x) such that x ∈ int(Ex). The sets int(Ex) are open (interiors are also open). Also, as
x ranges across X , the sets int(Ex) form a cover X , since every x in X is contained in its
own set int(Ex). By compactness, this means that X can be covered by finitely many sets
int(Ex). In other words, there exists x1, . . . , xn ∈ X such that

X ⊆ int(Ex1
) ∪ . . . ∪ int(Exn

). (1)

Define the set F by F = Ex1
∪ . . .∪Exn

. Since each Exi
is countable, and the finite union of

countable sets is countable (in fact, the countable union of countable sets is also countable!),
F is countable.

Now we have to show that F is dense in X . In other words, we want to show that every
non-empty open set in X contains at least one element of F . Let V be a non-empty open
set in X . Suppose for contradiction that V contained no element of F . Then it contained no
element of the Exi

. Since V is open, V therefore cannot contain any element of the closure of
Exi

. But this implies that V cannot contain any points in the right-hand side of (1), which
contradicts the fact that V is in X and is non-empty. Thus F is both countable and dense,
so that X is separable.
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Problem 4.

(a) Show that the continuous image of any connected set is connected.

See Chapter 2, Theorem 8.1. (OK, so it was rather silly to put this question in an open-book
final).

(b) Let {Xα}α∈A be a collection of topological spaces. Show that the product space
∏

α∈A Xα

is connected if and only if each Xα is connected.

The easy half:

Suppose
∏

α∈A Xα is connected. Since each πα is continuous for each α ∈ A, we thus have
that πα(

∏
α∈A Xα) is connected for each α ∈ A. But this space is just Xα.

The difficult half: (Sorry, this one was a bit too tricky for a final!)

Now suppose that each Xα is connected. We have to show that
∏

α∈A Xα is connected.

Let x = (xα)α∈A be a point in
∏

α∈A Xα. For every finite set α1, . . . , αn of indices in A, the
set

Yα1,...,αn
= {(yα)α∈A ∈

∏

α∈A

Xα : yβ = xβ for all β 6∈ {α1, . . . αn}

is homeomorphic to Xα1
× . . . × Xαn

, since the map

(yα)α∈A 7→ (yα1
, . . . , yαn

)

is one-to-one, onto, continuous, and open. By Chapter 2, Theorem 10.6, Xα1
× . . . × Xαn

is
connected, and so Yα1,...,αn

is also connected.

Each of the Yα1,...,αn
contains x. By Chapter 2, Theorem 8.2, the set

∞⋃

n=1

⋃

α1,...,αn∈A

Yα1,...,αn

is also connected.

Let’s call the above set Z. The closure of a connected set is also connected (exercise!) so Z
is connected.

We now claim that Z is dense in
∏

α∈A Xα. This would imply that Z =
∏

α∈A Xα, so we’d
be done.

To show that Z is dense, it suffices to show that every non-empty basic open set contains an
element of Z. So let
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π−1
α1

(U1) × . . . × π−1
αn

(Un)

be a basic open set with U1, . . . , Un non-empty. Let (yα)α∈A be defined by choosing yαk
to

be an element of Uk for k = 1, . . . , n, and yα = xα for all other values of α. Clearly (yα)α∈A

is in the basic open set, but it is also in Yα1,...,αn
, which is in Z, so we are done.
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Problem 5. Let X be a topological space such that, for every x ∈ X , one can find an open
neighbourhood U of x which is path-connected.

(a) Show that the path-connected components of X are both open and closed.

Let E be a path-connected component of X . We first show that E is open.

Let x ∈ E. By hypothesis, there exists a neighbourhood U ⊂ X of x with is path connected.
By definition of path connected component, U must be in E. Thus x is in the interior of E.
Since every element of E is an interior point, E is open.

Now we show that E is closed. Consider all the path connected components other than E.
These components are all open, by the previous argument. Thus their union is open. Taking
complements, we thus see that E is closed.

(b) Show that every connected component of X is a path-connected component, and vice
versa.

By Chapter 2, Corollary 9.3, every connected component of X is a union of path-connected
components. Suppose for contradiction that a connected component F of X contained at
least two path-connected components. Call one of these path-connected components E. E is
both open and closed in X , hence is both open and closed in F . Thus E and F\E are both
open in F and are disjoint, so that F is disconnected. This is a contradiction.
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Problem 6.

(a) Let X be a locally compact Hausdorff space, and let X ∪{∞} be the one-point compact-
ification of X .

Suppose that X is connected and non-compact. Show that X ∪ {∞} is connected.

Suppose for contradiction that X ∪ {∞} were not connected. Then there exists disjoint
non-empty open sets V, W in X ∪ {∞} such that X ∪ {∞} = V ∪ W .

Since V and W are open in X ∪ {∞}, V ∩ X and W ∩ X are open in X . (Note that the
relative topology on X induced from X ∪ {∞} co-incides with the original topology on X ,
see Chapter 2, Theorem 7.1). Thus V ∩ X and W ∩ X are disjoint open sets whose union is
X . Since X is connected, this is only possible if one of V ∩ X or W ∩ X is empty. Without
loss of generality we may assume that V ∩ X is empty. Since V is non-empty, this means
that V = {∞}. Since V is open, this means that the complement of V must be compact,
hence X is compact, a contradiction.

(b) Let A, B be connected subsets of a topological space X such that A ∩ B is non-empty.
Show that A ∪ B is connected.

Suppose for contradiction that A∪B were disconnected. Then there exists disjoint non-empty
open sets V, W in A ∪ B such that A ∪ B = V ∪ W .

By arguing as in (a) we see that V ∩ A and W ∩ A are disjoint open sets whose union is A.
Thus one of V ∩ A and W ∩ A must be empty. Similarly one of V ∩ B and W ∩ B must be
empty. Since V and W are non-empty subsets of A ∪ B, this leaves only two possibilities:
V = A, W = B or V = B, W = A. In either case we must have that A and B are both open
and disjoint in A ∪ B.

By hypothesis, there exists a point x which is both in A and B. Since A is open in A ∪ B,
there exists a neighbourhood of x in A ∪ B which is contained in A. Since x ∈ B, this
neighbourhood must also contain at least one point of B. But this means that A and B are
not disjoint, a contradiction.
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Problem 7. Let E be a covering space of X with covering map p : E → X , and let γ be a
path in X which starts at a and ends at b.

For each point e in the fiber p−1(a), let αe be the lift of γ starting at e, and let f(e) be the
final point of αe (i.e. f(e) = αe(1)).

(a) Show that f is a bijection from p−1(a) to p−1(b).

It’s enough to show that f has an inverse. For every point e′ in the fiber p−1(b), let βe′ be
the lift of γ−1 starting at e′, and let g(e′) be the final point of βe′ . Clearly g is a map from
p−1(b) to p−1(a). Now we show that f ◦ g and g ◦ f are the identity. Actually, I’ll just show
the second one and leave the first to you.

Let e ∈ p−1(a). We need to show that g(f(e)) = e.

The path βf(e) starts at f(e), and p ◦ βf(e) = γ−1. The path α−1
e also starts at f(e). Since

p ◦αe = γ, we also have p ◦α−1
e = γ−1. By Chapter 3, Theorem 5.2, the paths α−1

e and βf(e)

must be the same. In particular, they must have the same final point. But the final point of
α−1

e is e and the final point of βf(e) is g(f(e)), and we are done.

(b) Show that if X is path-connected, then all the fibers of E have the same cardinality.

Let p−1(a) and p−1(b) be two fibers in X . Since X is path-connected, there is a path γ in X
from a to b. By (a), we can find a bijection from p−1(a) to p−1(b), so these two fibers have
the same cardinality.
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Problem 8.

(a) Let X, Y be topological spaces, and define an equivalence relation ∼ on X×Y by defining
(x1, y1) ∼ (x2, y2) if and only if x1 = x2.

Show that X × Y/ ∼ is homeomorphic to Y .

The elements of X × Y/ ∼ are equivalence classes of ∼, and thus have the form

{(x, y) : y ∈ Y }

for some x. The map f : X → X × Y/ ∼ defined by

f : x 7→ {x} × Y

is thus a bijection. We need to show that it is continuous and open.

Let V be an open set in X ×Y/ ∼. This means that π−1(V ) is open in X×Y , where π is the
projection from X × Y to X × Y/ ∼ (it maps points (x, y) to equivalence classes {x} × Y ).
Since π1 is open by Chapter 2 Theorem 10.2, we thus see that π1(π

−1(V )) is open. But this
set is the same as f−1(V ) (why?). Thus f is continuous.

Now suppose that U is an open set in X . To show that f(U) is open in X × Y/ ∼, it suffices
to show that π−1(f(U)) is open in X × Y . But π−1(f(U)) is the same as U × Y (why?),
which is clearly open.

(b) Define an equivalence relation ∼ on [0, 1] × [0, 1] by defining (x1, y1) ∼ (x2, y2) if and
only if x1 = x2 and y1 − y2 is an integer. Show that [0, 1]× [0, 1]/ ∼ is homeomorphic to the
cylinder

C = {(x, y, z) : 0 ≤ z ≤ 1, x2 + y2 = 1}.

Apply Chapter 2, Theorem 13.4 with f(x, y) = (cos(2πy), sin(2πy), x). Observe that this
map is continuous and onto from [0, 1] × [0, 1] to C, and that f(x1, y1) = f(x2, y2) if and
only if (x1, y1) ∼ (x2, y2). Since [0, 1] × [0, 1] and C are both compact (closed and bounded
subsets of R2 and R3) and Hausdorff (all metric spaces are Hausdorff), the claim follows.
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