Problem 1. A set $X \subset \mathbb{R}^n$ is said to be \textit{star-shaped at the origin} if for every $x \in X$, the line segment $\{tx : 0 \leq t \leq 1\}$ is also contained in X.

Show that if X is star-shaped at the origin, then X is simply connected. (Hint: look at loops through the origin).
Problem 2. Let K, L be disjoint compact sets in a normal topological space X. Suppose that $f : K \to \mathbb{R}$ and $g : L \to \mathbb{R}$ are bounded and continuous functions on K, L respectively. Show that there exists a bounded continuous function $h : X \to \mathbb{R}$ such that $h(x) = f(x)$ for all $x \in K$ and $h(x) = g(x)$ for all $x \in L$.
Problem 3. A topological space \(X \) is said to be \textit{locally separable} if for every point \(x \in X \), there is a countable set \(E \) in \(X \) such that \(x \) is in the interior of \(E \).

Show that every compact, locally separable space is separable.
Problem 4.

(a) Show that the continuous image of any connected set is connected.

(b) Let \(\{X_\alpha\}_{\alpha \in A} \) be a collection of topological spaces. Suppose \(\prod_{\alpha \in A} X_\alpha \) is connected. Show that each \(X_\alpha \) is connected.
Problem 5. Let X be a topological space such that, for every $x \in X$, one can find an open neighbourhood U of x which is path-connected.

(a) Show that the path-connected components of X are both open and closed.

(b) Show that every connected component of X is a path-connected component, and vice versa.
Problem 6.

(a) Let X be a locally compact Hausdorff space, and let $X \cup \{\infty\}$ be the one-point compactification of X.

Suppose that X is connected and non-compact. Show that $X \cup \{\infty\}$ is connected.

(b) Let A, B be connected subsets of a topological space X such that $A \cap \overline{B}$ is non-empty. Show that $A \cup B$ is connected.
Problem 7. Let E be a covering space of X with covering map $p : E \rightarrow X$, and let γ be a path in X which starts at a and ends at b.

For each point e in the fiber $p^{-1}(a)$, let α_e be the lift of γ starting at e, and let $f(e)$ be the final point of α_e (i.e. $f(e) = \alpha_e(1)$).

(a) Show that f is a bijection from $p^{-1}(a)$ to $p^{-1}(b)$.

(b) Show that if X is path-connected, then all the fibers of E have the same cardinality.
Problem 8.

(a) Let X, Y be topological spaces, and define an equivalence relation \sim on $X \times Y$ by defining $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1 = x_2$.

Show that $X \times Y / \sim$ is homeomorphic to X.

(b) Define an equivalence relation \sim on $[0, 1] \times [0, 1]$ by defining $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1 = x_2$ and $y_1 - y_2$ is an integer. Show that $[0, 1] \times [0, 1] / \sim$ is homeomorphic to the cylinder

$$C = \{(x, y, z) : 0 \leq z \leq 1, x^2 + y^2 = 1\}.$$