Mathematics 121 Final Terence Tao June 10, 1997 **Problem 1.** A set $X \subset \mathbb{R}^n$ is said to be *star-shaped at the origin* if for every $x \in X$, the line segment $\{tx : 0 \le t \le 1\}$ is also contained in X.

Show that if X is star-shaped at the origin, then X is simply connected. (Hint: look at loops through the origin).

Problem 2. Let K, L be disjoint compact sets in a normal topological space X. Suppose that $f: K \to \mathbf{R}$ and $g: L \to \mathbf{R}$ are bounded and continuous functions on K, L respectively.

Show that there exists a bounded continuous function $h: X \to \mathbf{R}$ such that h(x) = f(x) for all $x \in K$ and h(x) = g(x) for all $x \in L$.

Problem 3. A topological space X is said to be *locally separable* if for every point $x \in X$ there is a countable set E in X such that x is in the interior of \overline{E} .

Show that every compact, locally separable space is separable.

Problem 4.

(a) Show that the continuous image of any connected set is connected.

(b) Let $\{X_{\alpha}\}_{\alpha \in A}$ be a collection of topological spaces. Suppose $\prod_{\alpha \in A} X_{\alpha}$ is connected. Show that eaach X_{α} is connected.

Problem 5. Let X be a topological space such that, for every $x \in X$, one can find an open neighbourhood U of x which is path-connected.

(a) Show that the path-connected components of X are both open and closed.

⁽b) Show that every connected component of X is a path-connected component, and vice versa.

Problem 6.

(a) Let X be a locally compact Hausdorff space, and let $X \cup \{\infty\}$ be the one-point compactification of X.

Suppose that X is connected and non-compact. Show that $X \cup \{\infty\}$ is connected.

(b) Let A, B be connected subsets of a topological space X such that $A \cap \overline{B}$ is non-empty. Show that $A \cup B$ is connected. **Problem 7.** Let *E* be a covering space of *X* with covering map $p: E \to X$, and let γ be a path in *X* which starts at *a* and ends at *b*.

For each point e in the fiber $p^{-1}(a)$, let α_e be the lift of γ starting at e, and let f(e) be the final point of α_e (i.e. $f(e) = \alpha_e(1)$).

(a) Show that f is a bijection from $p^{-1}(a)$ to $p^{-1}(b)$.

⁽b) Show that if X is path-connected, then all the fibers of E have the same cardinality.

Problem 8.

(a) Let X, Y be topological spaces, and define an equivalence relation \sim on $X \times Y$ by defining $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1 = x_2$.

Show that $X \times Y / \sim$ is homeomorphic to X.

$$C = \{(x, y, z) : 0 \le z \le 1, x^2 + y^2 = 1\}.$$

⁽b) Define an equivalence relation \sim on $[0,1] \times [0,1]$ by defining $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1 = x_2$ and $y_1 - y_2$ is an integer. Show that $[0,1] \times [0,1] / \sim$ is homeomorphic to the cylinder