Problem 1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Suppose that there is a bijection $f: X \rightarrow Y$ such that

$$
\frac{1}{10} d_{X}\left(x_{1}, x_{2}\right) \leq d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq 10 d_{X}\left(x_{1}, x_{2}\right)
$$

for all $x_{1}, x_{2} \in X$.
Show that if $X$ is complete, then $Y$ must also be complete.
[A function $f: X \rightarrow Y$ is a bijection if it is one-to-one and onto. Equivalently, a function $\underline{f: X \rightarrow Y}$ is a bijection if it has an inverse $\left.f^{-1}: Y \rightarrow X\right]$.
Solution: Let $\left\{y_{n}\right\}$ be a Cauchy sequence in $Y$. We have to show that $\left\{y_{n}\right\}$ converges in $Y$.

- Step 0: Define the sequence $\left\{x_{n}\right\}$ in $X$ by $x_{n}=f^{-1}\left(y_{n}\right)$.

Here we are using the fact that $f$ is invertible, so $f^{-1}: Y \rightarrow X$ is well defined.

- Step 1: Since $\left\{y_{n}\right\}$ is Cauchy, $\left\{x_{n}\right\}$ is Cauchy.

Proof: Let $\varepsilon>0$. Since $\left\{y_{n}\right\}$ is Cauchy, we can find an $N>0$ such that $d_{Y}\left(y_{n}, y_{m}\right)<$ $\varepsilon / 10$ for all $n, m>N$. Since $y_{n}=f\left(x_{n}\right)$ and $y_{m}=f\left(x_{m}\right)$, we thus see from the hypothesis that $d_{X}\left(x_{n}, x_{m}\right)<\varepsilon$ for all $n, m>N$. Thus $x_{n}$ is Cauchy.

- Step 2: Since $\left\{x_{n}\right\}$ is Cauchy, $\left\{x_{n}\right\}$ converges.

This is just because $X$ is complete.

- Step 3: Since $\left\{x_{n}\right\}$ converges, $\left\{y_{n}\right\}$ converges.

Proof: Let $x_{n}$ converge to $x$. Then $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. From hypothesis, we thus have $d\left(f\left(x_{n}\right), f(x)\right) \rightarrow 0$ as $n \rightarrow \infty$, so $d\left(y_{n}, f(x)\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, $y_{n}$ converges.

Many of you got these steps reversed or otherwise out of order.

Problem 2. Let $(X, d)$ be a metric space, and let $f: X \rightarrow \mathbf{R}$ and $g: X \rightarrow \mathbf{R}$ be continuous functions from $X$ to the real line $\mathbf{R}$. Let $\mathbf{R}^{2}$ be the plane with the Euclidean metric, and let $h: X \rightarrow \mathbf{R}^{2}$ be the function

$$
h(x)=(f(x), g(x)) .
$$

## Show that $h$ is continuous.

Solution A (using sequential definition of continuity): Let $\left\{x_{n}\right\}$ be a sequence in $X$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$. We have to show that $h\left(x_{n}\right) \rightarrow h(x)$ as $n \rightarrow \infty$.

Since $f, g$ are continuous, $f\left(x_{n}\right) \rightarrow f(x)$ and $g\left(x_{n}\right) \rightarrow g(x)$ as $n \rightarrow \infty$. Thus

$$
\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)-f(x)\right|=\lim _{n \rightarrow \infty}\left|g\left(x_{n}\right)-g(x)\right|=0
$$

Squaring both sides and adding, then taking square roots, we get

$$
\lim _{n \rightarrow \infty} \sqrt{\left|f\left(x_{n}\right)-f(x)\right|^{2}+\left|g\left(x_{n}\right)-g(x)\right|^{2}}=0
$$

so (since we are using the Euclidean metric)

$$
\lim _{n \rightarrow \infty}\left|h\left(x_{n}\right)-h(x)\right|=0
$$

Thus $h\left(x_{n}\right) \rightarrow h(x)$ as desired.
Solution B (using epsilon-delta definition of continuity): Let $x \in X$ and $\varepsilon>0$. We have to find a $\delta>0$ such that $h(B(x, \delta)) \subset B(h(x), \varepsilon)$.

Since $f$ is continuous, we can find a $\delta_{1}$ such that $f\left(B\left(x, \delta_{1}\right)\right) \subset B(f(x), \varepsilon / 2)$. Similarly we can find a $\delta_{2}$ such that $g\left(B\left(x, \delta_{2}\right)\right) \subset B(g(x), \varepsilon / 2)$.

Now let $\delta$ be the minimum of $\delta_{1}$ and $\delta_{2}$. We claim that $h(B(x, \delta)) \subset B(h(x), \varepsilon)$.
To see this, let $y \in B(x, \delta)$. Then $y \in B\left(x, \delta_{1}\right)$ and $y \in B\left(x, \delta_{2}\right)$, so $f(y) \in B(f(x), \varepsilon / 2)$ and $g(y) \in B(g(x), \varepsilon / 2)$. So $|f(y)-f(x)|<\varepsilon / 2$ and $|g(y)-g(x)|<\varepsilon / 2$.

Since

$$
|h(y)-h(x)|=\sqrt{|f(y)-f(x)|^{2}+|g(y)-g(x)|^{2}}
$$

we thus have

$$
|h(y)-h(x)|<\sqrt{\varepsilon^{2} / 4+\varepsilon^{2} / 4}<\varepsilon
$$

so $h(y) \in B(h(x), \varepsilon)$ as desired.
One can also use the inverse-image-of-open-sets definition of continuity, but it is somewhat cumbersome.

## Problem 3.

Let $X$ be a Banach space, and let $T: X \rightarrow X$ be a bounded linear operator on $X$ such that $\|T\|<1$. Let $x_{0}$ be an element of $X$. Show that there exists a unique $x \in X$ such that

$$
x=x_{0}+T x .
$$

(Hint: use the contraction principle).
Let $\Phi: X \rightarrow X$ denote the map

$$
\Phi(x)=x_{0}+T x .
$$

The problem can be rephrased as that of showing that $\Phi$ has exactly one fixed point. Since $X$ is a Banach space, it is complete, so it suffices to show that $\Phi$ is a contraction.

To verify this, we compute:

$$
\begin{gathered}
\|\Phi(x)-\Phi(y)\|=\left\|\left(x_{0}+T x\right)-\left(x_{0}+T y\right)\right\|=\|T x-T y\| \\
=\|T(x-y)\| \leq\|T\|\|x-y\|=c\|x-y\|
\end{gathered}
$$

where $c=\|T\|$. Since $c$ doesn't depend on $x$ or $y$ and $0 \leq c<1$ by hypothesis, $\Phi$ is thus a contraction.

Note: It is also true that $T$ is a contraction, and many of you proved this. However, this fact is not directly helpful to the problem.

Problem 4. Let $(X, d)$ be a metric space, and $E$ be a subset of $X$. Show that the boundary $\partial E$ of $E$ is closed in $X$.
[The boundary $\partial E$ of $E$ is defined to be the set of all points which are adherent to both $E$ and the complement $E^{c}$ of $E$.]

Solution A: Since $\partial E=\bar{E} \cap \overline{E^{c}}$, and the closure of any set is closed, $\partial E$ is the intersection of two closed sets. Since the intersection of any collection of closed sets is closed, $\partial E$ is therefore closed.

Solution B: Let $x$ be adherent to $\partial E$. Thus for every $r>0$, the ball $B(x, r)$ must contain some element, say $y$, in $\partial E$. Now define $s=r-d(x, y)$, so $B(y, s)$ is contained in $B(x, r)$. Since $y$ is in the boundary of $E$, it is adherent to both $E$ and $E^{c}$, so $B(y, s)$ contains elements from both $E$ and $E^{c}$. Hence $B(x, r)$ also contains elements from both $E$ and $E^{c}$.

Problem 5. Let $(X, d)$ be a metric space, and let $E$ be a subset of $X$. Show that if $E$ is compact, then it must be closed in $X$.

Solution A (using complete/totally bounded characterization of compactness): Since $E$ is compact, it is complete. Now suppose that $x \in X$ is adherent to $E$. Then there exists a sequence $x_{n}$ in $E$ which converges to $x$. Since convergent sequences are Cauchy, $x_{n}$ must be a Cauchy sequence. Since $E$ is complete, $x_{n}$ must converge to a point in $E$. Since a sequence cannot converge to more than one point, $x$ must be in $E$. Thus $E$ contains all its adherent points and so it is closed.

Solution B (using convergent subsequence characterization of compactness): Suppose that $x \in X$ is adherent to $E$. Then there exists a sequence $x_{n}$ in $E$ which converges to $x$. Since $E$ is compact, there is a subsequence $x_{n_{1}}, x_{n_{2}}, \ldots$ which converges in $E$. Since $x_{n}$ converges to $x$, the subsequence must also converge to $x$. Since a sequence cannot converge to more than one point, $x$ must be in $E$. Thus $E$ contains all its adherent points.

Solution C (using open cover characterization of compactness): Suppose that $x \in X$ is adherent to $E$, but that $x \notin E$. Consider the sets $V_{n}=\{y \in X: d(x, y)>1 / n\}$ for $n=1,2,3, \ldots$ Each of these sets is open. Since $x \notin E$, the sets $V_{n}$ cover $E$, because every element $y$ in $E$ is distinct from $x$ and so we must have $d(x, y)>1 / n$ for at least one integer $n$. Since $E$ is compact, it can be covered by finitely many $V_{n}$ :

$$
E \subset V_{n_{1}} \cup V_{n_{2}} \cup \ldots \cup V_{n_{k}}
$$

Let $N=\max \left(n_{1}, n_{2}, \ldots, n_{k}\right)$. Clearly

$$
V_{n_{1}} \cup V_{n_{2}} \cup \ldots \cup V_{n_{k}}=\{y \in X: d(x, y)>1 / N\} .
$$

Thus for every $y \in E, d(x, y)>1 / N$. This contradicts the assumption that $x$ is adherent to $E$.

