Problem 1. Let l^{∞} be the space of all bounded sequences of real numbers $\left(x_{n}\right)_{n=1}^{\infty}$, with the sup norm

$$
\|x\|_{\infty}=\sup _{n=1}^{\infty}\left|x_{n}\right| .
$$

Show that $\left(l^{\infty},\| \|_{\infty}\right)$ is a Banach space. (You may assume that this space satisfies the conditions for a normed vector space).
Solution. Since we are given that this space is already a normed vector space, the only thing left to verify is that $\left(l^{\infty},\| \|_{\infty}\right)$ is complete.

Let x^{1}, x^{2}, \ldots be a Cauchy sequence in l^{∞}. (Note that each element x^{n} of this sequence is an element of l^{∞}, so each x^{n} is itself a sequence, say

$$
x^{n}=\left(x_{1}^{n}, x_{2}^{n}, \ldots\right) .
$$

That's why I'm using superscripts here instead of subscripts.)
We have to find an element x in l^{∞} such that x^{n} converges to x.
Let $\varepsilon>0$. Because x^{n} is a Cauchy sequence, we see that there exists an $N>0$ such that

$$
\left\|x^{n}-x^{m}\right\|_{\infty}<\varepsilon
$$

for all $n, m>N$. Thus

$$
\sup _{k=1}^{\infty}\left|x_{k}^{n}-x_{k}^{m}\right|<\varepsilon
$$

for all $n, m>N$. In particular, we have

$$
\left|x_{k}^{n}-x_{k}^{m}\right|
$$

for all k and all $n, m>N$.
This means that for each k, the sequence

$$
x_{k}^{1}, x_{k}^{2}, \ldots
$$

is a Cauchy sequence in \mathbf{R}. Since \mathbf{R} is complete, we thus have a limit, call it x_{k} :

$$
\lim _{n \rightarrow \infty} x_{k}^{n}=x_{k} .
$$

Let x denote the sequence $x=\left(x_{1}, x_{2}, \ldots\right)$.
We'd like to show that x^{n} converges to x. Choose an $\varepsilon>0$. By replacing ε with $\varepsilon / 2$ in the previous discussion, we can find an $N>0$ such that

$$
\left|x_{k}^{n}-x_{k}^{m}\right|<\varepsilon / 2
$$

for all k and all $n, m>N$. Taking limits as $m \rightarrow \infty$, we obtain

$$
\left|x_{k}^{n}-x_{k}\right| \leq \varepsilon / 2
$$

for all k and all $n>N$. Taking supremum in k, we obtain

$$
\sup _{k=1}^{\infty}\left|x_{k}^{n}-x_{k}\right| \leq \varepsilon / 2
$$

for all $n>N$. In other words,

$$
\left\|x^{n}-x\right\|_{\infty} \leq \varepsilon / 2<\varepsilon
$$

for all $n>N$. This implies that x^{n} converges to x, and we are done.

Problem 2. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a bounded sequence of real numbers. Prove that there exists a bounded sequence $\left(b_{n}\right)_{n=1}^{\infty}$ such that

$$
\begin{equation*}
b_{n-1}+4 b_{n}+b_{n+1}=a_{n} \tag{*}
\end{equation*}
$$

for all $n=1,2, \ldots$, where we take b_{0} to equal 0 . [You may assume the result of Problem 1].
Hint: Use the Contraction Mapping theorem. You may need to rewrite the recurrence (*).
Solution: We can rewrite the recurrence as

$$
b_{n}=\frac{a_{n}}{4}-\frac{b_{n-1}+b_{n+1}}{4}
$$

Thus we want b to be a fixed point of the operator T defined by

$$
(T b)_{n}:=\frac{a_{n}}{4}-\frac{b_{n-1}+b_{n+1}}{4} .
$$

Note that if b is a bounded sequence, then $T b$ is automatically a bounded sequence (since we are assuming a is bounded). Thus T is a function from l^{∞} to l^{∞}. To apply the Contraction mapping theorem we now have to verify that T is a contraction on l^{∞}. In other words, we have to show that

$$
\|T x-T y\|_{\infty} \leq c\|x-y\|_{\infty}
$$

for some $0 \leq c<1$ and all $x, y \in l^{\infty}$.
Write $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right)$. We write the left-hand side as

$$
\|T x-T y\|_{\infty}=\sup _{n=1}^{\infty}\left|T x_{n}-T y_{n}\right| .
$$

Using the definition of T and cancelling, this is

$$
\|T x-T y\|_{\infty}=\sup _{n=1}^{\infty}\left|-\frac{x_{n-1}+x_{n+1}}{4}+\frac{y_{n-1}+y_{n+1}}{4}\right| .
$$

We can re-arrange this as

$$
\|T x-T y\|_{\infty}=\frac{1}{4} \sup _{n=1}^{\infty}\left|-\left(x_{n-1}-y_{n-1}\right)-\left(x_{n+1}-y_{n+1}\right)\right| .
$$

Both terms in parentheses are clearly less than $\|x-y\|_{\infty}$, so we have

$$
\|T x-T y\|_{\infty} \leq \frac{2}{4}\|x-y\|_{\infty}
$$

which gives the desired contraction.

Problem 3.

Let T_{1}, T_{2}, \ldots be a sequence of continuous linear transformations from a Banach space X to a normed vector space Y. Assume that none of the T_{i} are identically zero; in other words, for every i there exists a $x \in X$ such that $T_{i} x \neq 0$. Show that there exists a single $x \in X$ (which does not depend on i) such that $T_{i} x \neq 0$ for every i.

Hint: use the Baire Category theorem.
Solution: For each i, let S_{i} denote the set

$$
S_{i}=\left\{x \in X: T_{i} x \neq 0 .\right\}
$$

Our objective is to find a point $x \in X$ which is not contained in any of the S_{i}. On the Baire category theorem states that in a complete metric space, the countable union of open dense sets is itself dense (and hence non-empty). Since X is a Banach space, it is a complete metric space, and so we will be done if we can show that each S_{i} is open and dense.

The open-ness is easy, because S_{i} is the inverse image under T_{i} of $\mathbf{R} \backslash\{0\}$, which is an open set, and the inverse image of any open set under a continuous map is open. Now we show that it is dense. This means we need to show that for every ball $B(x, r)$ in X contains at least one point in S_{i}.

Suppose for contradiction that there was a ball $B(x, r)$ in X which did not contain a point in S_{i}. In other words, that $T_{i} y=0$ for all $y \in B(x, r)$. In particular, we have $T_{i} x=0$.

Now let z be any point in X (not necessarily in $B(x, r)$). If we choose N big enough, then the point $x+z / N$ is in $B(x, r)$, so $T_{i}(x+z / N)=0$. But we also have $T_{i} x=0$. Since T_{i} is linear, this is only possible if $T_{i} z=0$. Since z is arbitrary, this means that T_{i} is identically zero, a contradiction. Hence the set $T_{i} x \neq 0$ is dense, and we are done.

Problem 4.

(a) Show that the product of two totally bounded sets is totally bounded.

Solution: Let X, Y be totally bounded sets. We will give $X \times Y$ the Euclidean metric

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(d\left(x_{1}, x_{2}\right)^{2}+d\left(y_{1}, y_{2}\right)^{2}\right)^{1 / 2}
$$

(all the product metrics are equivalent, so there is no distinction to be made).
Pick an $\varepsilon>0$. We have to cover $X \times Y$ by finitely many balls of radius ε. Since X is totally bounded, it can be covered by finitely many balls of radius $\varepsilon / 10$, say

$$
X \subseteq \bigcup_{i=1}^{n} B\left(x_{i}, \varepsilon / 10\right)
$$

Similarly we can cover Y by finitely many balls of radius $\varepsilon / 10$:

$$
Y \subseteq \bigcup_{j=1}^{m} B\left(y_{j}, \varepsilon / 10\right)
$$

We now claim that $X \times Y$ can be covered by the finite number of balls

$$
X \times Y \subseteq \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} B\left(\left(x_{i}, y_{j}\right), \varepsilon\right)
$$

which will solve the problem.
Pick any $(x, y) \in X \times Y$. Since X is covered by the $B\left(x_{i}, \varepsilon / 10\right)$, we can find an i such that $x \in B\left(x_{i}, \varepsilon / 10\right)$. Similarly we can find a j such that $y \in B\left(y_{j}, \varepsilon / 10\right)$. This means that $d\left(x, x_{i}\right)<\varepsilon / 10$ and $d\left(y, y_{j}\right)<\varepsilon / 10$. Thus

$$
d\left((x, y),\left(x_{i}, y_{j}\right)\right)=\left(d\left(x, x_{i}\right)^{2}+d\left(y, y_{j}\right)^{2}\right)^{1 / 2}<\left(\varepsilon^{2} / 100+\varepsilon^{2} / 100\right)^{1 / 2}<\varepsilon
$$

so (x, y) is in the ball $B\left(\left(x_{i}, y_{j}\right), \varepsilon\right)$. This finishes the proof that $X \times Y$ is totally bounded.
(b) Show that every bounded set in \mathbf{R}^{n} is totally bounded.

Solution: Let $E \subset \mathbf{R}^{n}$ be a bounded set. Since E is bounded, it is contained in a ball. Since every ball in \mathbf{R}^{n} is contained in a cube, E must therefore be contained in a cube $I_{1} \times I_{2} \times \ldots \times I_{n}$, where all the sides I_{j} are intervals.

All intervals are totally bounded (for any $\varepsilon>0$, any interval $[a, b]$ can be covered by finitely many balls of radius ε). Also, from (a) the product of any two totally bounded sets is totally bounded. Thus the cube $I_{1} \times I_{2} \times \ldots \times I_{n}$ is totally bounded, and hence E is also totally bounded.

Problem 5. Suppose $f: X \rightarrow Y$ is a continuous map from a metric space X to a metric space Y.
(a) Is the inverse image of a closed set under f always closed? Justify your answer.

Solution: Yes. Let E be a closed set in Y. Then the complement E^{c} is open in Y, hence the inverse image $f^{-1}\left(E^{c}\right)$ is open in X. Now observe that $f^{-1}(E)^{c}=f^{-1}\left(E^{c}\right)$ (because both sets consist of those points $x \in X$ such that $f(x) \notin E)$, so $f^{-1}(E)^{c}$ is open, which means that $f^{-1}(E)$ is closed.
(b) Is the inverse image of a compact set under f always compact? Justify your answer.

Solution: No. For instance, let $X=Y=\mathbf{R}$, and let f be the constant function $f(x)=0$. Then $\{0\}$ is compact, but the inverse image of $\{0\}$ is all of \mathbf{R}, which is not compact.

