Math 115A - Week 7
Textbook sections: 4.5, 5.1-5.2
Topics covered:

e Cramer’s rule

Diagonal matrices

Eigenvalues and eigenvectors

Diagonalization
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Cramer’s rule

e Let A be an n x n matrix. Last week we introduced the notion of the
determinant det(A) of A, and also that of a cofactor A;; associated to
each row ¢ and column j. Given any row i, we then have the cofactor
expansion formula

n

det(A) = (=1)"" A, A

j=1
For instance, if

a b c

A= d e f

g h 1

then . . .
det(A) = GAH — bA12 + CA13

or in other words

a b ¢
det| d e f | =adet| € FYpaet (¢ 7 Vacdet [ ¢ €Y.
g hi h 1 g i g h



e Suppose we replace the row (a,b,c) by (d,e, f) in the above example.
Then we have

d e f
det | d e f :ddet<z f)—edet(d f)—kfdet(d e).
g hi 1 g 1 g h

But the left-hand side is zero because two of the rows are the same
(see Property 1 of determinants on the previous week’s notes). Thus
we have

0= d/in - 612112 + f/ilg.

Similarly we have ~ _ .
0=gA;1 — hAjs +iA;3.

We can also do the same analysis with the cofactor expansion along
the second row

det(A) = —dAQ]_ + 61422 - fzigg

yielding B B ~
0= —CLA21 + bA22 - CA23
0= —gAzl + hAQQ - 7;12123.
And similarly for the third row:
det(A) = 912131 — hA?,Q + ’l'A33

0= 0,12131 — bA33 + CA33
0= dAz — edsy + fAz.

We can put all these nine identies together in a compact matrix form
as

a b c +%11 —%21 +/:131 det(4) 0 0
d e f —Aip +Ay» —Ap | =10 det(A) 0
g h i +A13 —Ay +As 0 0 det(A)



The second matrix on the left-hand side is known as the adjugate of A,
and is denoted adj(A):

12111 jz‘im 12131
adj(A) == jAlz Azg —~A32
A —Ax Az
Thus we have the identity for 3 x 3 matrices
Aadj(A) = det(A)I;.
The adjugate matrix is the transpose of the cofactor matriz cof (A):
Aq —~f~112 An:,
cof(A) = jA21 Azg —~A23
Az —Az Az
Thus adj(A) = cof (A)". To compute the cofactor matrix, at every row
¢ and column j we extract the minor corresponding to that row and
column, take the n—1 xn—1 determinant of the minor, and then place

that number in the i entry of the cofactor matrix. Then we alternate
the signs by (—1)".

More generally, for n X n matrices, we can define the cofactor matrix
by
cof (A)yj = (=1)"7 Ay
and the adjugate matrix by adj(A4) = cof(A)?, so that
adj(A)y; = (-1 4y,
and then we have the identity
Aadj(A) = det(A)I,.
If det(A) is non-zero, then A is invertible and we thus have
1
A7l = dj(A).
det(A) Y (4)

This is known as Cramer’s rule - it allows us to compute the inverse of
a matrix using determinants. (There is also a closely related rule, also
known as Cramer’s rule, which allows one to solve equations Ax = b
when A is invertible; see the textbook).
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e For example, in the 2 x 2 case

a b
a=(70)
then the cofactor matrix is

cof(A) = ( ‘e )

and so the adjugate matrix is

adj(A) = cof (A)' = ( d b )

—C a

and so, if det(A) # 0, the inverse of A is

1 1 d —c
Al = (A) = ——— :
det(A)ad]( ) ad — be ( -b a )

* % k % %

Diagonal matrices

e Matrices in general are complicated objects to manipulate, and we are
always looking for ways to simplify them into something better. Last
week we explored one such way to do so: using elementary row (or
column operations) to reduce a matrix into row-echelon form, or to
even simpler forms. This type of simplification is good for certain
purposes (computing rank, determinant, inverse), but is not good for
other purposes. For instance, suppose you want to raise a matrix A to
a large power, say A'%. Using elementary matrices to reduce A to, say,
row-echelon form will not be very helpful, because (a) it is still not very
easy to raise row-echelon form matrices to very large powers, and (b)
one has to somehow deal with all the elementary matrices you used to
convert A into row echelon form. However, to perform tasks like this
there is a better factorization available, known as diagonalization. But
before we do this, we first digress on diagonal matrices.



e Definition An n x n matrix A is said to be diagonal if all the off-
diagonal entries are zero, i.e. A;; = 0 whenever ¢ # j. Equivalently, a
diagonal matrix is of the form

A;; O 0
A 0 j422 0
0 0 R
We write this matrix as diag(Ai1, Asg, - - ., Any). Thus for instance
1 00
diag(1,3,5)=[ 0 3 0
00 5

e Diagonal matrices are very easy to add, scalar multiply, and multiply.
One can easily verify that

diag(a1, ag, . .., a,)+diag(by, be, ..., b,) = diag(ai+b1, ag+ba, ..., a,+by,),

cdiag(ay, as, .. ., a,) = diag(caq, cas, . . ., cay)

and
diag(a, ag, . .., a,)diag(by, be, . .., b,) = diag(a1b1, agbs, . .., ayby,).
Thus for instance
diag(1, 3, 5)diag(1, 3, 5) = diag(1?, 3%, 5%)
and more generally
diag(1, 3,5)" = diag(1", 3", 5").

Thus raising diagonal matrices to high powers is very easy. More gen-
erally, polynomial expressions of a diagonal matrix are very easy to
compute. For instance, consider the polynomial f(z) = 23 + 422 + 2.
We can apply this polynomial to any n X n matrix A, creating the new
matrix f(A) = A®+4A42+2. In general, such a matrix may be difficult
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to compute. But for a diagonal matrix A = diag(as, as,...,a,), we
have

2 : 2 2 2
A® = diag(af, a3, ..., a;)

3 _ Jiag(nd o3 3
A° = diag(ai, a3, ..., a;)

and thus
f(A) = diag(a?+4a3+2, aj+4a2+2, . .., ad +4a>+2) = diag(f(a1), ..., f(an)).
This is true for more general polynomials f:

f(diag(ai, ..., a,)) = diag(f(a1), ..., f(an))-

Thus to do any sort of polynomial operation to a diagonal matrix, one
just has to perform it on the diagonal entries separately.

If Ais an n X n diagonal matrix A = diag(a4,...,a,), then the linear
transformation L, : R" — R" is very simple:

Ty ap 0 ... 0 T a171

To 0 a ... 0 To QAoTo
Ly . =1 . . . . ) =

Tn 0 0 ... an Tn AnTn

Thus L4 dilates the first co-ordinate x; by a1, the second co-ordinate x5
by as, and so forth. In particular, if 8 = (eq, es,...,e,) is the standard
ordered basis for R", then

Laiey = arer; Laey = ases;...; Lae, = aye,.

This leads naturally to the concept of eigenvalues and eigenvalues,
which we now discuss.

Remember from last week that the rank of a matrix is equal to the
number of non-zero rows in row echelon form. Thus it is easy to see
that

Lemma 1. The rank of a diagonal matrix is equal to the number of
its non-zero entries.



Thus, for instance, diag(3,4,5,0,0,0) has rank 3.

X %k ok >k ok

Eigenvalues and eigenvectors

Let T : V — V be a linear transformation from a vector space V to
itself. One of the simplest possible examples of such a transformation
is the identity transformation 7" = Iy, so that Tv = v for all v €
V. After the identity operation, the next simplest example of such a
transformation is a dilation 7" = Ay for some scalar A, so that Tv = Av
forallv e V.

In general, though, 7" does not look like a dilation. However, there are
often some special vectors in V' for which 7" is as simple as a dilation,
and these are known as eigenvectors.

Definition An eigenvector v of T is a non-zero vector v € V such that
Tv = Av for some scalar A. The scalar A\ is known as the eigenvalue
corresponding to v.

Example Consider the linear transformation 7 : R> — R? defined by
T(z,y) := (bz,3y). Then the vector v = (1,0) is an eigenvector of T’
with eigenvalue 5, since Tv = T(1,0) = (5,0) = 5v. More generally,
any non-zero vector of the form (z,0) is an eigenvector with eigenvalue
5. Similarly, (0,y) is an eigenvector of T with eigenvalue 3, if y is non-
zero. The vector v = (1,1) is not an eigenvector, because Tv = (5, 3)
is not a scalar multiple of v.

Example More generally, if A = diag(a4,...,a,) is a diagonal matrix,
then the basis vectors ey, ..., e, are eigenvectors for L 4, with eigenval-
ues ai, ..., a, respectively.

Example If T is the identity operator, then every non-zero vector
is an eigenvector, with eigenvalue 1 (why?). More generally, if 7' =
Ay is A times the identity operator, then every non-zero vector is an
eigenvector, with eigenvalue A (Why?).

Example If T : V — V is any linear transformation, and v is any
non-zero vector in the null space N(T'), then v is an eigenvector with
eigenvalue 0. (Why?)



Example Let T : R> — R? be the reflection through the line [ connect-
ing the origin to (4,3). Then (4, 3) is an eigenvector with eigenvalue 1
(why?), and (3, —4) is an eigenvector with eigenvalue -1 (why?).

We do not consider the 0 vector as an eigenvector, even though 70 is
always 0, because we cannot determine what eigenvalue 0 should have.

If Ais an n x n matrix, we say that v is an eigenvector for A with
eigenvalue A if it is already an eigenvector for L4 with eigenvalue A, i.e.
Av = Mv. In other words, for the purposes of computing eigenvalues
and eigenvectors we do not distinguish between a matrix A and its
linear transformation L 4.

(Incidentally, the word “eigen” is German for “own”. An eigenvector
is a vector which keeps its own direction when acted on by 7. The
terminology is thus a hybrid of German and English, though some
people prefer “principal value” and “principal vector” to avoid this (or
“characteristic” or “proper” instead of “principal”). Then again,

“vector” is pure Latin. English is very cosmopolitan).

Definition Let T : V — V be a linear transformation, and let A be
a scalar. Then the eigenspace of T corresponding to A is the set of all
vectors (including 0) such that Tv = Av.

Thus an eigenvector with eigenvalue A is the same thing as a non-
zero element of the eigenspace with eigenvalue A. Since Tv = v is
equivalent to (T'— Ay )v = 0, we thus see that the eigenspace of T'
with eigenvalue A is the same thign as the null space N(T' — AIy) of
T — A\ly. In particular, the eigenspace is always a subspace of V. From
the above discussion we also see that A is an eigenvalue of 7" if and only
if N(T — Aly) is non-zero, i.e. when T'— Aly is not one-to-one.

Example Let 7 : R*> — R? be the transformation T'(z,y) := (5z, 3y).
Then the z-axis is the eigenspace N (T — 3IR2) with eigenvalue 5, while
the y-axis is the eigenspace N (T—5IR2) with eigenvalue 5. For all other
values A # 3,5, the eigenspace NV (I'— AIR) is just the zero vector space

{0} (why?).



The relationship between eigenvectors and diagonal matrices is the fol-
lowing.

Lemma 2. Suppose that V' is an n-dimensional vector space, and
suppose that T' : V' — V is a linear transformation. Suppose that
V' has an ordered basis f = (v1,v2,...,v,), such that each v; is an
eigenvector of T with eigenvalue A;. Then the matrix [T]g is a diagonal

matrix; in fact [T]g = diag(A1,- .-, An)-

Conversely, if 8 = (vq, va, - . ., v, ) is a basis such that [T]g = diag(A1, ..., An),
then each v; is an eigenvector of 7" with eigenvalue .

Proof Suppose that v; is an eigenvector of 17" with eigenvalue A;. Then
Tv; = \jv;, so [Tv;]? is just the column vector with ;™ entry equal
to A;, and all other entries zero. Putting all these column vectors
together we see that [T]g = diag(A,...,A,). Conversely, if [T]g =
diag(A1, ..., An), then by definition of [T]g we see that Tv; = A\;jv;, and
so v; is an eigenvector with eigenvalue \;. U

Definition. A linear transformation 7' : V' — V is said to be diago-
nalizable if there is an ordered basis 5 of V' for which the matrix [T]g
is diagonal.

Lemma 2 thus says that a transformation is diagonalizable if and only
if it has a basis consisting entirely of eigenvectors.

Example Let T : R> — R? be the reflection through the line [ connect-
ing the origin to (4,3). Then (4,3) and (3, —4) are both eigenvectors
for T'. Since these two vectors are linearly independent and R? is two-
dimensional, they form a basis for 7'. Thus 7' is diagonalizable; indeed,

if 8:= ((4,3), (3,—4)), then
)8 = ( oY ) = diag(1, —1).

If one knows how to diagonalize a transformation, then it becomes very
easy to manipulate. For example, in the above reflection example we



see very quickly that 7" must have rank 2 (since diag(1l,—1) has two
non-zero entries). Also, we can square T easily:

(77 = diag(1, ~1)° = diag(1,1) = I = [I:];

and hence T2 = IRz, the identity transformation. (Geometrically, this
amounts to the fact that if you reflect twice around the same line, you
get the identity).

Definition. An n x n matrix A is said to be diagonalizable if the
corresponding linear transformation L4 is diagonalizable.

Example The matrix A = diag(5, 3) is diagonalizable, because the
linear operator L, in the standard basis = ((1,0),(0,1)) is just A
itself: [LA]g = A, which is diagonal. So all diagonal matrices are
diagonalizable (no surprise there).

Lemma 3. A matrix A is diagonalizable if and only if A = QDQ !
for some invertible matrix ) and some diagonal matrix D. In other
words, a matrix is diagonalizable if and only if it is similar to a diagonal
matrix.

Proof Suppose A was diagonalizable. Then [LA]g: would be equal to
some diagonal matrix D, for some choice of basis 5’ (which may be
different from the standard ordered basis 5. But by the change of
variables formula,

A=[Ly)f= Q[LA]g:Qfl =QDQ™

as desired, where ) := [IRn]g, is the change of variables matrix.

Conversely, suppose that A = QDQ™! for some invertible matrix Q.
Write D = diag(\y, ..., An), so that De; = A;. Then

A(Qe;j) = QDQ'Qe; = QDe; = QAje; = Aj(Qe;)

and so QQe; is an eigenvector for A with eigenvalue A;. Since @) is

invertible and eq,...,e, is a basis, we see that Qeq,...,Qe, is also a
basis (why?). Thus we have found a basis of R" consisting entirely of
eigenvectors of A, and so A is diagonalizable. O
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From Lemma 2 and Lemma 3 we see that if we can find a basis
(v1,...,v,) of R™ which consists entirely of eigenvectors of A, then
A is diagonalizable and A = QDQ ! for some diagonal matrix D and
some invertible matrix (). We now make this statement more precise,
specifying precisely what ) and D are.

Lemma 4. Let A be an n X n matrix, and suppose that (vi,...,v,)
is an ordered basis of R" such that each v; is an eigenvector of A with
eigenvalue \; (i.e. Av; = Av; for j =1,...,n). Then we have

A= leag()‘la R AR)Q_I
where () is the n X n matrix with columns vy, v, ..., v,:
Q = (UlaUZ: e :Un)'

Proof. Let ' be the ordered basis 8’ := (v, ve,...,v,) of R", and let
B = (e1,€e,...,e,) be the standard ordered basis of R". Then

gl =@
(why?). So by the change of variables formula
A=[Laly = QLALQ™
On the other hand, since L4v; = Ajv;, we see that
[LA]§: = diag(A1, .-, \n)-

Combining these two equations we obtain the lemma. 0.

X %k sk ok ok

Computing eigenvalues

e Now we compute the eigenvalues and eigenvectors of a general matrix.

The key lemma here is

e Lemma 5. A scalar ) is an eigenvalue of an n x n square matrix A if

and only det(A — AI,) = 0.
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e Proof. If ) is an eigenvalue of A, then Av = Av for some non-zero v,
thus (A — AI,)v = 0. Thus A — A, is not invertible, and so det(A —
AM,) = 0 (Theorem 12 from last week’s notes). Conversely, if det(A —
Al,) = 0, then A — AI, is not invertible (again by Theorem 12), which
means that the corresponding linear transformation is not one-to-one
(recall that one-to-one and onto are equivalent when the domain and
range have the same dimension; see Lemma 2 of Week 3 notes). So we
have (A — AI,)v = 0 for some non-zero v, which means that Av = A\v
and hence A is an eigenvalue. U

e Because of this lemma, we call det(A — AI,) the characteristic polyno-
mial of A, and sometimes call it f(A). Lemma 5 then says that the
eigenvalues of A are precisely the zeroes of f()).

e Example Let A be the matrix

01
(1)
Then the characteristic polynomial f(\) is given by

f(A):det<1_A }_/\):—/\(1—,\)—1><1:,\2—A—1.

From the quadratic formula, this polynomial has zeroes when A =
(1++/5)/2, and so the eigenvalues are \; := (1 ++/5)/2 = 1.618...
and Ay = (1 —/5)/2:= —0.618....

e Once we have the eigenvalues of A, we can compute eigenvectors, be-
cause the eigenvectors with eigenvalues A\ are precisely those non-zero
vectors in the null-space of A — A1, (or equivalently, of the null space
of L A — )\IRn)

e Example: Let A be the above matrix. Let us try to find the eigenvec-

tors ( Z ) with eigenvalue A\; = (1+4+/5)/2. In other words, we want

to solve the equation

u-a+va(1)=(g)
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or in other words

(e ) ()= (0)

or equivalently

1++v5
2

1-+5
2

z+y=0

T+ y=0.

This matrix does not have full rank (since its determinant is zero - why
should this not be surprising?). Indeed, the second equation here is

just (1 —+/5)/2 times the first equation. So the general solution is y

1-v5
2

_1-v5
()

as an eigenvector of A with eigenvalue \; = (1 + /5)/2.

_1+Vv5
()

as an eigenvector of A with eigenvalue Ay = (1 —+/5)/2. Thus we have
Avy = Moy and Avy = Ayve. Thus, if we let ' be the ordered basis

B':= (v1,vy), then
g [ A 0
[LA]ﬂ’ - ( 0  Ae ) )

Thus A is diagonalizable. Indeed, from Lemma 4 we have

A=QDQ!

where D := diag(\;, A2) and @ := (v1, vq).

arbitrary, and z equal to — y. In particular, we have

A similar argument gives

As an application, we recall the example of Fibonacci’s rabbits from
Week 2. If at the beginning of a year there are z pairs of juvenile
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rabbits and y pairs of adult rabbits - which we represent by the vector
( Z ) in R? - then at the end of the next year there will be y juvenile

pairs and x + y adult pairs - so the new vector is

(2a)=(0 1) (0)=2(3)

Thus, each passage of a year multiplies the population vector by A. So
if we start with one juvenile pair and no adult pairs - so the population

1 .
0 )" then after n years, the population vector
should become A™vy. To compute this, one would have to multiply A
by itself n times, which appears to be difficult (try computing A° by
hand, for instance!). However, this can be done efficiently using the

diagonalization A = QDQ ! we have. Observe that
A =QDQIQDQ ! =QD*Q
A3 — A2A — QD2Q_1QDQ_1 — QD3Q_1

and more generally (by induction on n)

vector is initially vy :=

A" =QD"Q .
In particular, our population vector after n years is
An’UO = QD"Q_IU().

But since D is the diagonal matrix D = diag(A;, A2), D" is easy to
compute:
D" = diag(A?, \p).

Now we can compute QD"Q~'v,. Since
_ 15 1445
Q:(Ul,’l)g):<1 2 1 2 )

we have

1—\/5+1—\/5:\/5

det(Q) = —— 5
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and so by Cramer’s rule

and so

and hence

o . | 1 1 A?
D Q 11}0 :dlag(Al,AQ)ﬁ ( 1 ) = —5 ( _1)\'3 ) .

= —1, we have

Q= ( —15 ) _ ( A Az?l)
1 1 1 1
and hence

e (5 F)5(%)- (B 50)

Thus, after n years, the number of pairs of juvenile rabbits is

Foy =\ 1=X21) /5 = ((1.618.. )" ' —(—0.618...)" 1) /2.236.. . .,
and the number of pairs of adult rabbits is
F,= ("= X\)/V5 = ((1.618...)" — (—0.618...)")/2.236.. . ..

This is a remarkable formula - it does not look like it at all, but the
expressions F),_1, F), are always integers. For instance

Fy=((1.618...)% — (—=0.618...)%)/2.236... = 2.
(Check this!). The numbers

F():O,Fl:]_,FQZ1,F3=2,F4:3,F5:5,F6:8,F7:13,F8=25,...
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are known as Fibonacci numbers and come up in all sorts of places
(including, oddly enough, the number of petals on flowers and pine
cones). The above formula shows that these numbers grow exponen-
tially, and are comparable to (1.618)™ when n gets large. The number
1.618... = (1 + +/5)/2 is known as the golden ratio and has several
interesting properties, which we will not go into here.

A final note. Up until now, we have always chosen the field of scalars
to be real. However, it will now sometimes be convenient to change the
field of scalars to be complex, because one gets more eigenvalues and
eigenvectors this way. For instance, consider the matrix

A:<21 (1))

The characteristic polynomial f()) is given by
_ ! 2
f()\)—det( 1 ) =X +1

If one restricts the field of scalars to be real, then f(A) has no zeroes,
and so there are no real eigenvalues (and thus no real eigenvectors). On
the other hand, if one expands the field of scalars to be complex, then
f(X) has zeroes at A = +i, and one can easily show that vectors such as

1 . i o 1. .
; ) are eigenvectors with eigenvalue 7, while ( ; ) is an eigenvector

with eigenvalue —i. Thus it is sometimes advantageous to introduce
complex numbers into a problem which seems purely concerned with
real numbers, because it can introduce such useful concepts as eigen-
vectors and eigenvalues into the situation. (An example of this appears
in Q10 of this week’s assignment).
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