Math 115A - Week 3
Textbook sections: 2.1-2.3
Topics covered:

Null spaces and nullity of linear transformations
Range and rank of linear transformations

The Dimension theorem

Linear transformations and bases

Co-ordinate bases

Matrix representation of linear transformations

Sum, scalar multiplication, and composition of linear transformations
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Review of linear transformations

e A linear transformation is any map 7 : V' — W from one vector space

V to another W such that T preserves vector addition (i.e. T'(v+v') =
Tv 4+ Tv' for all v,v" € V) and T preserves scalar multiplication (i.e.
T(cv) = cTv for all scalars ¢ and all v € V).

A map which preserves vector addition is sometimes called additive; a
map which preserves scalar multiplication is sometimes called homoge-
Neous.

We gave several examples of linear transformations in the previous
notes; here are a couple more.

Sampling as a linear transformation Recall that F(R,R) is the
space of all functions from R to R. This vector space might be used
to represent, for instance, sound signals f(¢). In practice, a measuring
device cannot capture all the information in a signal (which contains
an infinite amount of data); instead it only samples a finite amount, at
some fixed times. For instance, a measuring device might only sample



f(t) for t = 1,2,3,4,5 (this would correspond to sampling at 1Hz for
five seconds). This operation can be described by a linear transforma-
tion S : F(R,R) — R®, defined by

Sf=(f(1),f(2),£3), f(4), f(5));

i.e. S transforms a signal f(¢) into a five-dimensional vector, consisting
of f sampled at five times. For instance,

S(z*) = (1,4,9,16,25)
S(Vz) = (V1,V2,V3,V4,V5)
etc. (Why is this map linear?)

One can similarly sample polynomial spaces. For instance, the map
S : P,(R) — R? defined by

Sf=(£(0), f(1), f(2))
is linear.

Interpolation as a linear transformation Interpolation can be
viewed as the reverse of sampling. For instance, given three numbers
Y1, Y2, Y3, the Lagrange interpolation formula gives us a polynomial

f € P,(R) such that f(0) = y1, f(1) = y2, and f(2) = ys:

(x —1)(x —2) (x — 0)(z —2) (x —0)(x — 1)
0-D0-2 " PI-01-2 ®e-0e-1)
One can view this as a linear transformation S : R* — P,(R) defined
by S(y1,v9,93) := [, e.g.

fl@)=u

z—0)(z—1)

o)
1-0(1-2)  *e2-0@e-1)"

(Why is this linear?). This is the inverse of the transformation S
defined in the previous paragraph - but more on that later.



e Linear combinations as a linear transformation Let V' be a vector
space, and let vy, ..., v, be a set of vectors in V. Then the transforma-
tion 7 : R™ — V defined by

T(a1,...,0,) == a1vy + ...+ a,v,

is a linear transformation (why?). Also, one can express many of the
statements from previous notes in terms of this transformation 7'. For
instance, span({vy,...,v,}) is the same thing as the image T'(R") of
T; thus {vy,...,v,} spans V if and only if 7" is onto. On the other
hand, 7T is one-to-one if and only if {vy,...,v,} is linearly independent
(more on this later). Thus T is a bijection if and only if {v1,...,v,} is
a basis.

* % ok % %

Null spaces and nullity

e A note on notation: in this week’s notes, we shall often be dealing with
two different vector spaces V' and W, so we have two different types of
vectors. We will try to reserve the letter v to denote vectors in V', and
w to denote vectors in W, in what follows.

e Not all linear transformations are alike; for instance, the zero trans-
formation 7" : V. — W defined by Tv := 0 behaves rather differently
from, say, the identity transformation 7" : V' — V defined by 7w := v.
Now we introduce some characteristics of linear transformations to start
telling them apart.

e Definition Let T : V — W be a linear transformation. The null space
of T, called N(T), is defined to be the set

N({T)={veV:Tv=0}.

e In other words, the null space consists of all the stuff that 7" sends
to zero (this is the zero vector Oy of W, not the zero vector Oy of
V): N(T) = T7'({0}). Some examples: if T": V — W is the zero
transformation 7Tv := 0, then the null space N(7) = V. If instead
T :V — V is the identity transformation Tv := v, then N(T') = {0}.
If T: R® — R is the linear transformation T'(z,v, z) = © +y + z, then
N(T) is the plane {(z,y,2) € R* : 2 +y + 2 = 0}.
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The null space of T is sometimes also called the kernel of T', and is some-
times denoted ker(7'); but we will use the notation N(T') throughout
this course.

The null space N(T) is always a subspace of V; this is an exercise.
Intuitively, the larger the null space, the more 7" resembles the 0 trans-
formation. The null space also measures the extent to which 7" fails to
be one-to-one:

Lemma 1. Let T : V — W be a linear transformation. Then 7T is
one-to-one if and only if N(T") = {0}.

Proof. First suppose that 71" is one-to-one; we have to show that
N(T) = {0}. First of all, it is clear that 0 € N(T'), because 70 = 0.
Now we show that no other element is in N(7). Suppose for contra-
diction that there was a non-zero vector v € V such that v € N(T),
i.e. that Twv = 0. Then Tv = T0. But T is one-to-one, so this forces
v = 0, contradiction.

Now suppose that N(T') = {0}; we have to show that T is one-to-one.
In other words, we need to show that whenever Tv = Tv', then we
must have v = v'. So suppose that Tv = Tv'. Then Tv — Tv' = 0, so
that T'(v —v') = 0. Thus v —v' € N(T'), which means by hypothesis
that v —v' = 0, so v = v', as desired. O

Example: Take the transformation 7" : R" — V defined by

T(a1,...,0,) == a1vy + ...+ a,v,
which we discussed earlier. If {vq,...,v,} is linearly dependent, then
there is a non-zero n-tuple (ay, ..., a,) such that 0 = ajv; + ...+ a,vy;

i.e. N(T) will consist of more than just the 0 vector. Conversely, if
N(T) # {0}, then {vy,...,v,} is linearly dependent. Thus by Lemma
1, T is injective if and only if {vq,...,v,} is linearly independent.

Since N(T) is a vector space, it has a dimension. We define the nullity
of T to be the dimension of N(T); this may be infinite, if N(T) is
infinite dimensional. The nullity of 7" will be denoted nullity(7"), thus
nullity (7)) = dim(N(T')).



Example: let 7 : R> — R® be the operator
(21, T2, T3, T, T5) := (21, T2, 23,0,0)
(Why is this linear?). Then
N(m) ={(0,0,0,z4,25) : 24,25 € R}

(why?); this is a two-dimensional space (it has a basis consisting of
(0,0,0,1,0) and (0,0,0,0,1) and so nullity(7) = 2.

Example: By Lemma 1, a transformation is injective if and only if it
has a nullity of 0.

The nullity of 7" measures how much information (or degrees of free-
dom) is lost when applying 7. For instance, in the above projection,
two degrees of freedom are lost: the freedom to vary the x4 and x5 co-
ordinates are lost after applying w. An injective transformation does
not lose any information (if you know T'v, then you can reconstruct v).

X %k ok ok ok

Range and rank

You may have noticed that many concepts in this field seem to come
in complementary pairs: spanning set versus linearly independent set,
one-to-one versus onto, etc. Another such pair is null space and range,
or nullity and rank.

Definition The range R(T) of a linear transformation 7': V. — W is
defined to be the set

R(T)={Tv:veV}.

In other words, R(T) is all the stuff that T maps into: R(T) =T (V).
(Unfortunately, the space W is also sometimes called the range of T’
to avoid confusion we will try to refer to W instead as the target space
for T'; V is the initial space or domain of T'.)

Just as the null space N(7') is always a subspace of V, it can be shown
that R(T) is a subspace of W (this is part of an exercise).
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Examples: If T': V — W is the zero transformation Tv := 0, then
R(T) = {0}. If T : V — V is the identity transformation Tv := v,
then R(T)=V. If T : R"™ — V is the transformation

T(a1,...,0,) == a1v1 + ...+ azv,
discussed earlier, then R(T") = span({vy,...,v,}).
Example: A map T : V — W is onto if and only if R(T) = W.

Definition The rank rank(7) of a linear transformation 7' : V. — W
is defined to be the dimension of R(T), thus rank(7) = dim(R(T)).

Examples: The zero transformation has rank 0 (and indeed these are
the only transformations with rank 0). The transformation

(21, T2, T3, T, T5) := (L1, T2, 23,0,0)
defined earlier has range
R(m) = {(x1, 22, 73,0,0) : 21,29, 23 € R}
(why?), and so has rank 3.

The rank measures how much information (or degrees of freedom) is
retained by the transformation 7. For instance, with the example of
7w above, even though two degrees of freedom have been lost, three
degrees of freedom remain.

X %k %k 3k X

The dimension theorem

Let T: V — W be a linear transformation. Intuitively, nullity(7") mea-
sures how many degrees of freedom are lost when applying T’; rank(7)
measures how many degrees of freedom are retained. Since the ini-
tial space V originally has dim(V') degrees of freedom, the following
theorem should not be too surprising.

Dimension theorem Let V' be a finite-dimensional space, and let
T :V — W be a linear transformation. Then

nullity(7') + rank(7") = dim(7).



e The proof here will involve a lot of shuttling back and forth between
V and W using T'; and is an instructive example as to how to analyze
linear transformations.

e Proof. By hypothesis, dim(V) is finite; let’s define n := dim (V). Since
N(T) is a subspace of V, it must also be finite-dimensional; let’s call
k := dim(N(T')) = nullity(7). Then we have 0 < k£ < n. Our task is to
show that &k +rank(7") = n, or in other words that dim(R(T)) = n— k.

e By definition of dimension, the space N(7T') must have a basis {vy, ..., v}
of k elements. (Probably it has many such bases, but we just need one
such for this argument). This set of k£ elements lies in N(7"), and thus
in V, and is linearly independent; thus by part (f) of Corollary 1 of last
week’s notes, it must be part of a basis of V', which must then have
n = dim(V') elements (by part (¢) of Corollary 1). Thus we may add

n — k extra elements vg1,. .., v, to our N(7T')-basis to form an V-basis
{’Ul, ceey Un}.
e Since vgi1,-- -,V liein V| the elements Tvgyq, ..., Tv, liein R(T). We

now claim that {Tvgy1,...,Tv,} are a basis for R(T); this will imply
that R(7T') has dimension n — k, as desired.

e To verify that {Tvgi1,...,Tv,} form a basis, we must show that they
span R(T') and that they are linearly independent. First let’s show
they span R(7T). This means that every vector in R(T) is a linear
combination of Tvg1, ..., Tv,. So let’s pick a typical vector w in R(T);
our job is to show that w is a linear combination of Tvg4,...,Tv,. By
definition of R(T), w must equal Tv for some v in V.

e On the other hand, we know that {vy,...,v,} spans V, thus we must
have
V=a1V1 + ...+ ayv,

for some scalars aq,...,a,. Applying T' to both sides and using the
fact that T is linear, we obtain

Tv=aTvi +...+a,Tv,.



e Now we use the fact that v1,..., v liein N(T'),s0o Tv; = ... =Tv, = 0.
Thus
Tv = a1 T V1 + ... + anTvy,.

Thus w = T'v is a linear combination of T4, ...,Tv,, as dsired.

e Now we show that {Tvgy1,...,Tv,} is linearly independent. Suppose
for contradiction that this set was linearly dependent, thus

ak—f—lTvk:—i—l + ...+ anTvn =0

for some scalars agy1,...,a, which were not all zero. Then by the
linearity of T" again, we have

T(ak+1Vk+1 + - -+ apvy) =0
and thus by definition of null space

Ag+1Vk41 + -« . + apv, € N(T).
Since N(T') is spanned by {v1, ..., v}, we thus have

Ap+1Vk+1 + ...+ 0V, = a1V + ... QU

for some scalars aq, ..., ar. We can rearrange this as

-1V — ... — QU + Ap+1Vk+1 + ...+ ayv, = 0.
But the set {vy,...,v,} is linearly independent, which means that all
the a’s must then be zero. But that contradicts our hypothesis that
not all of the ag,1,. .., a, were zero. Thus {Tvg1,...,Tv,} must have
been linearly independent, and we are done. .

e Example Let T : R?> — R? denote the linear transformation
T(z,y) := (x +y,2x + 2y).
The null space of this transformation is

N(T)={(z,y) eR*:x+y =0}



(why?); this is a line in R?, and thus has dimension 1 (for instance, it
has {(1,—1)} as a basis). The range of this transformation is

R(T) = {(t,2t) : t € R}

(why?); this is another line in R? and has dimension 1. Since 1+1=2,
the Dimension theorem is verified in this case.

Example For the zero transformation Tz := 0, we have nullity(7") =
dim(X) and rank(7") = 0 (so all the degrees of freedom are lost); while
for the identity transformation Tz := z we have nullity(7") = 0 and
rank(7") = dim(X) (so all the degrees of freedom are retained). In both
cases we see that the Dimension theorem is verified.

One important use of the Dimension theorem is that it allows us to
discover facts about the range of T" just from knowing the null space of
T, and vice versa. For instance:

Example Let T : Ps(R) — P,(R) denote the differentiation map
Tf=f4

thus for instance T'(z3+2x) = 3x?+2. The null space of T’ consists of all
polynomials f in Ps(R) for which f’ = 0; i.e. the constant polynomials

N(T) ={c:ce R} =FR).

Thus N(T) has dimension 1 (it has {1} as a basis). Since P5(R) has
dimension 6, we thus see from the dimension theorem that R(7) must
have dimension 5. But R(T) is a subspace of P4(R), and P,;(R) has
dimension 5. Thus R(T) must equal all of P;(R). In other words, every
polynomial of degree at most 4 is the derivative of some polynomial of
degree at most 5. (This is of course easy to check by integration, but
the amazing fact was that we could deduce this fact purely from linear
algebra - using only a very small amount of calculus).

Here is another example:

Lemma 2 Let V and W be finite-dimensional vector spaces of the
same dimension (dim(V) = dim(W)), and let T : V. — W be a linear
transformation from V to W. Then T is one-to-one if and only if T is
onto.



e Proof If T is one-to-one, then nullity(7") = 0, which by the dimension
theorem implies that rank(7") = dim(V). Since dim(V) = dim(W), we
thus have dim R(T") = dim(W). But R(T) is a subspace of W, thus
R(T) = W, i.e. T is onto. The reverse implication then follows by
reversing the above steps (we leave as an exercise to verify that all the
steps are indeed reversible). O

e Exercise: re-interpret Corollary 1(de) from last week’s notes using this
Lemma, and the linear transformation

T(a1,...,0,) = a1v1 + ...+ ayv,
discussed earlier.
Linear transformations and bases

e Let T : V — W be a linear transformation, and let {v,...,v,} be
a collection of vectors in V. Then {Tvy,...,Tv,} is a collection of
vectors in W. We now study how similar these two collections are; for
instance, if one is a basis, does this mean the other one is also a basis?

e Theorem 3 If 7 : V — W is a linear transformation, and {vy,...,v,}
spans V, then {Tvy,...,Tv,} spans R(T).

e Proof. Let w be any vector in R(T"); our job is to show that w is a
linear combination of T'vy, ..., Tv,. But by definition of R(T"), w = Tw
for some v € V. Since {vq,...,v,} spans V, we thus have v = ajv; +
...+ a,v, for some scalars aq,...,a,. Applying T to both sides, we
obtain Tv = a1Tv, + ...+ a,Tv,. Thus we can write w = Tv as a
linear combination of Tvq,...,Tv,, as desired. O

e Theorem 4 If T': V — W is a linear transformation which is one-to-
one, and {vy,...,v,} is linearly independent, then {Tvy,...,Tv,} is
also linearly independent.

e Proof Suppose we can write 0 as a linear combination of {Tv1, ..., Tv, }:

0=a1Tvy + ...+ a,Tv,.
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Our job is to show that the aq,...,a, must all be zero. Using the
linearity of 7', we obtain

0= T(alvl + ...+ anvn).
Since T is one-to-one, N(T') = {0}, and thus
O:CL1U1+...+CLH’U”.

But since {v1, ..., v,} is linearly independent, this means that ay, ..., a,
are all zero, as desired. [l

e Corollary 5If T : V — W is both one-to-one and onto, and {vy,...,v,}
is a basis for V, then {Tvy,...,Tv,} is a basis for W. (In particular,
we see that dim(V) = dim(W)).

e Proof Since {v,...,v,} is a basis for V, it spans V; and hence, by
Theorem 3, {Tvy,...,Tv,} spans R(T). But R(T") = W since T is onto.
Next, since {v1,...,v,} is linearly independent and 7" is one-to-one, we
see from Theorem 4 that {Tvq,...,Tv,} is also linearly independent.

Combining these facts we see that {Tvy,...,Tv,} is a basis for W. 0O

e The converse is also true: if T : V' — W is one-to-one, and {Tvy,...,Tv,}
is a basis, then {vy,...,v,} is also a basis; we leave this as an exercise
(it’s very similar to the previous arguments).

e Example The map 7 : P3(R) — R* defined by
T(az® 4+ bx® + cx + d) == (a,b, ¢, d)

is both one-to-one and onto (why?), and is also linear (why?). Thus we
can convert every basis of P3(R) to a basis of R* and vice versa. For
instance, the standard basis {1, z, 2% 23} of P3(R) can be converted to
the basis {(0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0)} of R%. In princi-
ple, this allows one to convert many problems about the vector space
Ps(R) into one about R*, or vice versa. (The formal way of saying this
is that P3(R) and R* are isomorphic; more about this later).

* % k % %

Using a basis to specify a linear transformation
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e In this section we discuss one of the fundamental reasons why bases
are important; one can use them to describe linear transformations in
a compact way.

e In general, to specify a function f: X — Y, one needs to describe the
value f(z) for every point z in X; for instance, if f : {1,2,3,4,5} —
R, then one needs to specify f(1), f(2), f(3), f(4), f(5) in order to
completely describe the function. Thus, when X gets large, the amount
of data needed to specify a function can get quite large; for instance,
to specify a function f : R* — R?, one needs to specify a vector
f(z) € R? for every single point = in R? - and there are infinitely
many such points! The remarkable thing, though, is that if f is linear,
then one does not need to specify f at every single point - one just
needs to specify f on a basis and this will determine the rest of the
function.

e Theorem 6 Let V be a finite-dimensional vector space, and let {v1, ..., v,}
be a basis for V. Let W be another vector space, and let wy, ..., w, be
some vectors in W. Then there exists exactly one linear transformation
T :V — W such that Tv; = w; for each j =1,2,...,n.

e Proof We need to show two things: firstly, that there exists a linear
transformation 7" with the desired properties, and secondly that there
is at most one such transformation.

e Let’s first show that there is at most one transformation. Suppose
for contradiction that we had two different linear transformations 7" :
V—=Wand U :V — W such that Tv; = w; and Uv; = w; for each
j=1,...,n. Now take any vector v € V', and consider T'v and Uv.

e Since {v1,...,v,} is a basis of V', we have a unique representation
V= QU1 + AoVs + ...+ ApU,
where aq, ..., a, are scalars. Thus, since 7" is linear
Tv=a;Tvy + axTve + ...+ a,Tv,
but since Tv; = w;, we have

Tv = ajwy + agwsy + . .. + a,w,.

12



Arguing similarly with U instead of T', we have
Uv = aqwy + agwg + ... + a,w,.

so in particular Tv = Uw for all vectors v. Thus T and U are exactly
the same linear transformation, a contradiction. Thus there is at most
one linear transformation.

Now we need to show that there is at least one linear transformation 7'
for which Tw; = w;. To do this, we need to specify T'v for every vector
v € V, and then verify that 7" is linear. Well, guided by our previous
arguments, we know how to find 7Tv: we first decompose v as a linear
combination of vy, ..., v,

V=a1V1 + ...+ apVy,
and then define T'v by the formula above:
Tv :=aqqwy + ...+ a,w,.

This is a well-defined construction, since the scalars aq,...,a, are
unique (see the Lemma on page 36 of week 1 notes). To check that
Tv; = wj, note that

v; =0v + ...+ 0vj_1 + 1v; + 0vj41 + ... + 0y,
and thus by definition of T’
Tv; = 0wy + ...+ 0wj—1 + 1w; + 0vj41 + ...+ 0w, = w;
as desired.

It remains to verify that T is linear; i.e. that T'(v+v') = Tv+Tv" and
that T'(cv) = c¢Tv for all vectors v,v' € V and scalars c.

We'll just verify that T'(v +v") = Tv + T', and leave T'(cv) = ¢T'v as
an exercise. Fix any v,v" € V. We can decompose

V=a1V1 + ...+ ayv,

13



and
UI:b1U1+...+bnvn

for some scalars a4, ..., ay,b1,...,b,. Thus, by definition of 7',
Tv=aywi;+ ...+ a,w,

and
TV = bw; + ...+ byw,

and thus

Tv+Tv = (a1 +b)wy + ...+ (an + by)wy.
On the other hand, adding our representations of v and v’ we have
v4+v' = (a1 +b)vr + ...+ (@, + by)vy
and thus by the definition of T again
Tw+v")= (a1 +b)w + ...+ (an + bn)wy

and so T'(v+v') = Tv+Tv" as desired. The derivation of T'(cv) = ¢T'v
is similar and is left as an exercise. This completes the construction of
T and the verification of the desired properties. O

Example: We know that R” has {(1,0),(0,1)} as a basis. Thus, by
Theorem 6, for any vector space W and any vectors wy, wy in W, there
is exactly one linear transform 7 : R? — W such that 7(1,0) = w;
and 7(0,1) = wy. Indeed, this transformation is given by

T(z,y) == 2wy + ywe

(why is this transformation linear, and why does it have the desired
properties?).

Example: Let 6 be an angle. Suppose we want to understand the
operation Roty : R* — R? of anti-clockwise rotation of R? by 6. From
elementary geometry one can see that this is a linear transformation.
By some elementary trigonometry we see that Rotg(1,0) = (cos 6, sin 6)
and Roty(0,1) = (—sinf, cosf). Thus from the previous example, we
see that

Roty(z,y) = x(cos 8, sin §) + y(— sin b, cos 9).

14
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Co-ordinate bases

Of all the vector spaces, R" is the easiest to work with; every vector v
consists of nothing more than n separate scalars - the n co-ordinates of
the vector. Vectors from other vector spaces - polynomials, matrices,
etc. - seem to be more complicated to work with. Fortunately, by us-
ing co-ordinate bases, one can convert every (finite-dimensional) vector
space into a space just like R".

Definition. Let V be a finite dimensional vector space. An ordered
basis of V' is an ordered sequence (v, ..., v,) of vectors in V' such that
the set {vy,...,v,} is a basis.

Example The sequence ((1,0,0),(0,1,0),(0,0,1)) is an ordered basis
of R?; the sequence ((0,1,0),(1,0,0),(0,0,1)) is a different ordered
basis of R®. (Thus sequences are different from sets; rearranging the
elements of a set does not affect the set).

More generally, if we work in R", and we let e; be the vector with % co-
ordinate 1 and all other co-ordinates 0, then the sequence (eq, es, . .., €,)
is an ordered basis of R", and is known as the standard ordered basis
for R". In a similar spirit, (1,z,22,...,2") is known as the standard
ordered basis for P,(R).

Ordered bases are also called co-ordinate bases; we shall often give
bases names such as 5. The reason why we need ordered bases is so
that we can refer to the first basis vector, second basis vector, etc.
(In a set, which is unordered, one cannot refer to the first element,
second element, etc. - they are all jumbled together and are just plain
elements).

Let = (v1,...,v,) be an ordered basis for V, and let v be a vector in
V. From the Lemma on page 36 of Week 1 notes, we know that v has
a unique representation of the form

V=aiV; + ...+ QpUy.
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The scalars aq, . .., a, will be referred to as the co-ordinates of v with
respect to 3, and we define the co-ordinate vector of v relative to (3,
denoted [v]?, by
a1
ol =

Gn

(In the textbook, [v]s is used instead of [v]?. 1 believe this is a mistake
- there is a convention that superscripts should refer to column vectors
and subscripts to row vectors - although this distinction is of course very
minor. This convention becomes very useful in physics, especially when
one begins to study tensors - a generalization of vectors and matrices
- but for this course, please don’t worry too much about whether an
index should be a subscript or superscript.)

Example Let’s work in R?) and let v := (3,4, 5). If 3 is the standard
ordered basis 8 := ((1,0,0), (0,1,0),(0,0,1)), then

3
P = | 4
)

since
(3,4,5) = 3(1,0,0) + 4(0,1,0) + 5(0,0, 1).

On the other hand, if we use the ordered basis 8’ := ((0, 1, 0), (1,0, 0), (0,0, 1)),

then
4

P =1 3
5
since

(3,4,5) = 4(0,1,0) + 3(1,0,0) + 5(0, 0, 1).
If instead we use the basis 8" := ((3,4,5), (0,1,0), (0,0, 1)), then
1

[v]’gl =10
0
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since
(3,4, 5) = 1(3,4, 5) + 0(0, 1, 0) + 0(0, 0, 1).

For more general bases, one would probably have to do some Gaussian
elimination to work out exactly what the co-ordinate vector is (similar
to what we did in Week 1).

Example Now let’s work in P»(R), and let f = 32? + 4z + 6. If B is
the standard ordered basis 8 := (1, x,z?), then

7= 4
3

since
f=6x1+4xz+3x2%

Or using the reverse standard ordered basis 8" := (2%, z,1), we have

3
[f)7 = 4
6
since
f=3xz>4+4xzx+6x1.
6 3
Note that while | 4 | and | 4 | are clearly different column vectors,
3 6

they both came from the same object f. It’s like how one person may
perceive a pole as being 12 feet long and another may perceive it as
being 4 yards long; both are correct, even though 12 is not equal to
4. It’s just that one person is using feet as a basis for length and the
other is using yards as a basis for length. (Units of measurement are
to scalars as bases are to vectors. To be pedantic, the space V of all
possible lengths is a one-dimensional vector space, and both (yard)
and (foot) are bases. A length v might be equal to 4 yards, so that
[v]@ard) = (4), while also being equal to 12 feet, so [v](/*°) = 12).
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e Given any vector v and any ordered basis 3, we can construct the
co-ordinate vector [v]?. Conversely, given the co-ordinate vector

a1
) =
Gn
and the ordered basis 8 = (v1,...,v,), one can reconstruct v by the

formula
V=V + ...+ ayvU,.

Thus, for any fixed basis, one can go back and forth between vectors v
and column vectors [v]? without any difficulty.

e Thus, the use of co-ordinate vectors gives us a way to represent any
vector as a familiar column vector, provided that we supply a basis
. The above examples show that the choice of basis § is important;
different bases give different co-ordinate vectors.

e A philosophical point: This flexibility in choosing bases underlies a ba-
sic fact about the standard Cartesian grid structure, with its z and y
axes, etc: it is artificial! (though of course very convenient for com-
putations). The plane R? is a very natural object, but our Cartesian
grid is not (the ancient Greeks were working with the plane back in
300 BC, but Descartes only introduced the grid in the 1700s). Why
couldn’t we make, for instance, the z-axis point northwest and the y-
axis point northeast? This would correspond to a different basis (for
instance, using ((1,1), (1,—1)) instead of ((1,0),(0,1)) but one could
still do all of geometry, calculus, etc. perfectly well with this grid.

e (The way mathematicians describe this is: the plane is canonical, but
the Cartesian co-ordinate system is non-canonical. Canonical means
that there is a natural way to define this object uniquely, without
recourse to any artificial convention.)

e As we will see later, it does make sense every now and then to shift
one’s co-ordinate system to suit the situation - for instance, the above
basis ((1,1), (1, —1)) might be useful in dealing with shapes which were
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always at 45 degree angles to the horizontal (i.e. diamond-shaped ob-
jects). But in the majority of cases, the standard basis suffices, if for
no reason other than tradition.

e The very operation of sending a vector v to its co-ordinate vector [v]? is
itself a linear transformation, from V' to R": see this week’s homework.

* % ok % %

The matrix representation of linear transformations

e We have just seen that by using an ordered basis of V', we can represent
vectors in V' as column vectors. Now we show that by using an ordered
basis of V and another ordered basis of W, we can represent linear
transformations from V to W as matrices. This is a very fundamental
observation in this course; it means that from now on, we can study
linear transformations by focusing on matrices, which is exactly what
we will be doing for the rest of this course.

e Specifically, let V' and W be finite-dimensional vector spaces, and let
B := (vi,...,v,) and v = (w1, ..., wy) be ordered bases for V and W
respectively; thus {v,...,v,} is a basis for V and {wy,...,w,} is a
basis for W, so that V' is n-dimensional and W is m-dimensional. Let
T be a linear transformation from V to W.

e Example Let V = P3(R), W = P(R), and T : V. — W be the
differentiation map T'f := f'. We use the standard ordered basis 3 :=
(1,z,22 2%) for V, and the standard ordered basis v := (1,z,z?) for
W. We shall continue with this example later.

e Returning now to the general situation, let us take a vector v in V' and
try to compute 7'v using our bases. Since v is in V, it has a co-ordinate
representation

x1
[v) =

Ty
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with respect to . Similarly, since Tw is in W, it has a co-ordinate
representation

(Al
[Tw]" =

Ym

with respect to 7. Our question is now: how are the column vectors
[v]? and [Tw]” related? More precisely, if we know the column vector
[v]?, can we work out what [Tw]” will be? Of course, the answer will
depend on T'; but as we shall see, we can quantify this more precisely, by
saying that the answer will depend on a certain matriz representation
of T with respect to 8 and .

e Example Continuing our previous example, let’s pick a v € P3(R) at
random, say v := 32> + 7z + 5, so that

5
7
W=
0
Then we have Tv = 6x + 7, so that
7
[Tv]"=1| 6
0
5
The question here is this: starting from the column vector ; for
0
7
v, how does one work out the column vector | 6 | for Tw?
0

e Return now to the general case. From our formula for [v]z, we have

V=21V + TV + ...+ TpUy,
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so if we apply T to both sides we obtain
Tv=x,Tv; + 25Tvy + ... + 2,Tv,,. (0.1)

while from our formula for [T'v]” we have

Tv = yyw1 + Yows + . .. + Y Wi, (0.2)
Now to connect the two formulae. The vectors Tvy,...,Tv, lie in W,
and so they are linear combinations of wy, ..., wy,:
T’U1 = a1wi + ag1wWo + ...+ Q1 Wy,
T’Ug = a1oWqi + ao2Wa + ...+ QoW
Tv, =apw+agws+...+ Ay Wi
note that the numbers a4, ..., a,, are scalars that only depend on 7',

B, and 7 (the vector v is only relevant for computing the z’s and y’s).

Substituting the above formulae into (0.1) we obtain

Tv= zi(anwi + ...+ GpiWn)
+$2(012’w1 + ...+ amgwm)

+z,(a1w1 + . .o+ G Wi,)

Collecting coefficients and comparing this with (0.2) (remembering that

{wy, ..., wy} is a basis, so there is only one way to write T'v as a linear
combination of wy, ..., w,) - we obtain

Y1 =011+ 0122 ...+ Q1pTh

Yo = 02171+ Q%2 + ...+ G2pTp

Ym = Gm1T1 + GmaX2 + .. . + GmpTy-

This may look like a mess, but it becomes cleaner in matrix form:

y a1 a19 c.. Q1p T
1 1
Q921 929 ... Qop
Ym ' Tn,

Am1 Am2 .- Qmp



Thus, if we define [T]} to be the matrix

a1 a19 c.o. Qip
a a ..
[T],y — 21 22 2n
R
m1 Am2 --- Qmnp

then we have answered our question of how to link [v]? with [T]":
[Tv]" = [TT3[v)”.

(If you like, the § subscript on the T has “cancelled” the 8 superscript
on the v. This is part of a more general rule, known as the Eisenstein
summation convention, which you might encounter in advanced physics
courses when dealing with things called tensors).

It is no co-incidence that matrices were so conveniently suitable for this
problem; in fact matrices were initially invented for the express purpose
of understanding linear transformations in co-ordinates.

Example. We return to our previous example. Note
TU1:T].:0:0’U)1+0U)2+0’U13

Tvy =Tz =1=1w; + Owy + Ows
Tv; = Tz? = 22 = Qwy + 2w, + Ow;
Tv, = Tz? = 32% = 0wy + Ows + 3w

and hence
0100
[T]g =1 0020
000 3

Thus [v]? and [Tv]” are linked by the equation

[Tv]” = [v])’,

o O O
o NN O
w o o

1
0
0



thus for instance returning to our previous example

o
Il
coo
oo~
oo
wo o
o w >

The matrix [T]g is called the matriz representation of T with respect

to the bases 8 and 7. Notice that the ;" column of [T} is just the
co-ordinate vector of T'v; with respect to 7:

[T} = ([Tvi]” [Twa]” ... [Tw]")
(see for instance the previous Example).

In many cases, V' will be equal to W, and S equal to 7; in that case we
may abbreviate [T} as [T].

Just like a vector v can be reconstructed from its co-ordinate vector
[v]? and vice versa (provided one knows what J is, of course), a linear
transformation 7" can be reconstructed from its co-ordinate matrix [77}
and vice versa (provided 8 and « are given). Indeed, if one knows [T},
then one can work out the rule to get from v to T'v as follows: first
write v in terms of (3, obtaining the co-ordinate vector [v]?; multiply
this column vector by [T} to obtain [Tw]”, and then use v to convert
this back into the vector Tv.

The scalar case All this stuff may seem very abstract and foreign, but
it is just the vector equivalent of something you are already familiar
with in the scalar case: conversion of units. Let’s give an example.
Suppose a car is travelling in a straight line at a steady speed 7" for
a period v of time (yes, the letters are strange, but this is deliberate).
Then the distance that this car traverses is of course 7'v. Easy enough,
but now let’s do everything with units.

Let’s say that the period of time v was half an hour, or thirty minutes.
It is not quite accurate to say that v = 1/2 or v = 30; the precise
statement (in our notation) is that [v](#°¥") = (1/2), or [v](minute) =
(30). (Note that (hour) and (minute) are both ordered bases for time,
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which is a one-dimensional vector space). Since our bases just have one
element, our column vector has only one row, which makes it a rather
silly vector in our case.

Now suppose that the speed T was twenty miles an hour. Again, it is
not quite accurate to say that T" = 20; the correct statement is that
[T](mile) o (20)

(hour) —

since we clearly have
T(1 x hour) = 20 x mile.
We can also represent 7" in other units:

()i = (1/3)

(minute) =
kilomet
MWy = (32)
etc. In this case our “matrices” are simply 1 x 1 matrices - pretty
boring!

Now we can work out 7w in miles or kilometers:

[Te] ™) = [T 17 = (20)(1/2) = (10)

hour)

or to do things another way

[Tv] 1) = [](mee) | [w] i) = (1/3)(30) = (10).

mainute

Thus the car travels for 10 miles - which was of course obvious from the
problem. The point here is that these strange matrices and bases are
not alien objects - they are simply the vector versions of things that
you have seen even back in elementary school mathematics.

A matrix example Remember the car company example from Week
1?7 Let’s run an example similar to that. Suppose the car company
needs money and labor to make cars. To keep things very simple, let’s
suppose that the car company only makes exteriors - doors and wheels.
Let’s say that there are two types of cars: coupes, which have two doors
and four wheels, and sedans, which have four doors and four wheels.
Let’s say that a wheel requires 2 units of money and 3 units of labor,
while a door requires 4 units of money and 5 units of labor.
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e We're going to have two vector spaces. The first vector space, V, is the
space of orders - the car company may have an order v of 2 coupes and
3 sedans, which translates to 16 doors and 20 wheels. Thus

2
(coupe,sedan) __
g (3)

16
(door,wheel) __ .
[U] - ( 20 ) )

both (coupe, sedan) and (door, wheel) are ordered bases for V. (One
could also make other bases, such as (coupe, wheel), although those are
rather strange).

and

e The second vector space, W, is the space of resources - in this case,
just money and labor. We’re only going to use one ordered basis here:
(money, labor).

e There is an obvious linear transformation 7" from V to W - the cost
(actually, price is a more accurate name for 7'; cost should really refer
to Tv). Thus, for any order v in V, Tv is the amount of resources
required to create v. By our hypotheses,

T(door) = 4 x money + 5 x labor

and
T (wheel) = 2 x money + 3 X labor

SO
(money,labor) __ 4 2
[T](door,uzjheel) - ( 5 3 ) :
You may also check that
(money,labor) __ 16 24
[T](coupe:jlsedan) - ( 29 392 :
Thus, for our order v, the cost to make v can be computed as

(money,labor) _ (money,labor) [ 1(doorwheel) __ 4 2 16 = 104
[TU] [T](door,wheel) [U] - ( 5 3 ) ( 20 - 140
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or equivalently as

(money,labor) _ (money,labor) . 1(coupe,sedan) _ 1624 2 =
[TU] [T](coupe,sedan) [U] ( 22 32 3

i.e. one needs 104 units of money and 140 units of labor to com-
plete the order. (Can you explain why these two apparently distinct
computations gave exactly the same answer, and why this answer is
actually the correct cost of this order?). Note how the different bases
(coupe, sedan) and (door, wheel) have different advantages and disad-
vantages; the (coupe, sedan) basis makes the co-ordinate vector for v
nice and simple, while the (door,wheel) basis makes the co-ordinate
matrix for 7" nice and simple.

X %k %k 3k X

Things to do with linear transformations

We know that certain operations can be performed on vectors; they can
be added together, or multiplied with a scalar. Now we will observe
that there are similar operations on linear transformations; they can
also be added together and multiplied by a scalar, but also (under
certain conditions) can also be multiplied with each other.

Definition. Let V and W be vector spaces, and let S : V — W and
T :V — W be two linear transformations from V to W. We define
the sum S + T of these transformations to be a third transformation

S+T:V — W, defined by

(S+T)w) = Sv+Twv.

Example. Let S : R*> — R? be the doubling transformation, defined
by Sv :=2v. Let T : R* — R? be the identity transformation, defined
by Twv :=v. Then S + T is the tripling transformation

(S+T)w=8Sv+Tv=2v+v=23v.

Lemma 7 The sum of two linear transformations is again a linear
transformation.
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Proof Let S : V — W, T : V — W be linear transformations. We
need to show that S+ 7T : V — W is also linear; i.e. it preserves
addition and preserves scalar multiplication. Let’s just show that it
preserves scalar multiplication, i.e. for any v € V and scalar ¢, we have
to show that

(S+T)(cv) =c(S+T)v.

But the left-hand side, by definition, is
S(cv) + T(ev) = eSv + cTw
since S, T are linear. Similarly, the right-hand side is
c(Sv+Tv) =cSv+cTv

by the axioms of vector spaces. Thus the two are equal. The proof
that S 4+ T preserves addition is similar and is left as an exercise. [

Note that we can only add two linear transformations S, T if they have
the same domain and target space; for instance it is not permitted to
add the identity transformation on R? to the identity transformation
on R®. This is similar to how vectors can only be added if they belong
to the same space; a vector in R? cannot be added to a vector in R?.

Definition. Let 7 : V — W be a linear transformation, and let ¢ be
a scalar. We define the scalar multiplication c¢T' of ¢ and T to be the
transformation ¢7" : V — W, defined by

(cT)(v) = e(Tw).
It is easy to verify that ¢T is also a linear transformation; we leave this

as an exercise.

Example Let S : R?> — R? be the doubling transformation, defined
by Sv := 2v. Then 25 : R? =+ R? is the quadrupling transformation,
defined by 2S5v := 4wv.

Definition Let £L(V, W) be the space of linear transformations from V'
to W.
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Example In the examples above, the transformations S, T, S+T, and
2S all belonged to £L(R? R?).

Lemma 8 The space L(V, W) is a subspace of F(V, W), the space of
all functions from V' to W. In particular, £(V, W) is a vector space.

Proof Clearly £L(V, W) is a subset of F(V, W), since every linear trans-
formation is a transformation. Also, we have seen that the space
L(V, W) of linear transformations from V' to W is closed under addition
and scalar multiplication. Hence, it is a subspace of the vector space
F(V,W), and is hence itself a vector space. (Alternatively, one could
verify each of the vector space axioms (I-VIII) in turn for £(V, W); this
is a tedious but not very difficult exercise). d

The next basic operation is that of multiplying or composing two linear
transformations.

Definition Let U, V, W be vector spaces. Let S : V — W be a
linear transformation from V to W, and let T : U — V be a linear
transformation from U to V. Then we define the product or composition
ST :U — W to be the transformation

ST (u) := S(T(u)).

Example Let U : R — R be the right shift operator

U(zy,zg,...) = (0,21, 29, ...).
Then the operator UU = U? is given by
U*(x1,29,...) :=U(U(x1,22,...)) = U(0,21,79,...) = (0,0, 21,29, ...),
i.e. the double right shift.
Example Let U* : R — R™ be the left-shift operator

U*(x1,xa,...) = (X2, T3,...).
Then U*U is the identity map:

U*U(.’L'l,.’lfg, .. ) = U*(O,Jfl,xg, .- ) = (.’L‘l,.’EQ, .. )
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but UU* is not:
UU*(acl,xg,...) = U(.TQ,) = (O,ZCQ,. . )
Thus multiplication of operators is not commutative.

e Note that in order for ST to be defined, the target space of T has
to match the initial space of S. (This is very closely related to the
fact that in order for matrix multiplication AB to be well defined, the
number of columns of A must equal the number of rows of B).

* % k % %

Addition and multiplication of matrices

e We have just defined addition, scalar multiplication, and composition
of linear transformations. On the other hand, we also know how to
add, scalar multiply, and multiply matrices. Since linear transforma-
tions can be represented (via bases) as matrices, it is thus a natural
question as to whether the linear transform notions of addition, scalar
multiplication, and composition are in fact compatible with the matrix
notions of addition, scalar multiplication, and multiplication. This is
indeed the case; we will now show this.

e Lemma 9 Let V, W be finite-dimensional spaces with ordered bases f3,
v respectively. Let S:V — W and T : V — W be linear transforma-
tions from V' to W, and let ¢ be a scalar. Then

(S + 715 = (5]} + [T}

and
[CT]g = C[T]g.

e Proof. We'll just prove the second statement, and leave the first as an
exercise. Let’s write 8 = (vq,...,v,) and v = (w1, ..., w,), and denote
the matrix [T} by

ailr a2 A1n
a a a
[TP _ 21 22 2n
B
am1 Am2 Amn



Thus

T’U1 = a1 Wy + ag1Wo + ...+ Q1 Wy,
T’U2 = Q1oW1 + Go2W9 + ...+ QoW
Tv, = a1,wi+ agpwe + ...+ GmnWm;

Multiplying by ¢, we obtain

(cT)vy = capywy + cagiwy + ... + Clpy Wiy,
(cT)vy = carawr + cagwy + ... + CUmaWn,
(cT)v, = carpwi + caguws + . . . + COpp Wy,
and thus
Ca11 CQa12 ... CQip
Ca921 CAa99 ... CQop
v .
[CT]ﬂ «— - 7
Chm1 CQyo -.. CQmp
i.e. [T} = c[T]} as desired. O

o We'll leave the corresponding statement connecting composition of lin-
ear transformations with matrix multiplication for next week’s notes.
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