Solutions to the actual midterm

Q1. (A remark: the linear transformation 7" is similar to the right-shift
operator discussed in class, but note that we are only working on R*
instead of the space R*> of sequences, so things are a little different.

(a) The rank of T is the dimension of the range R(T"), which is
R(T) = {Tv:v € R'}Y = {(0, 21, 19, 23) : x1, 29,73 € R}.

This space is clearly spanned by {(0, 1,0, 0), (0,0, 1,0), (0,0,0, 1) }, which
are three independent vectors, and so R(T) is three dimensional, and
so rank(7") = 3.

The nullity of T is the dimension of the null space N(7'), which is
N(T) ={v e R": Tv =0} = {(x1, x2, x5, 24) € R* : (0, 71, 22, 23) = 0}

= {(0,0,0,334) VIS R}

(not {(z1,0,0,0) : z; € R} as some of you claimed!). This space is
spanned by (0,0,0,1) and so is one-dimensional, hence nullity(7") = 1.

Of course, because of the dimension theorem one only needs to compute
just one of the rank and nullity of 7T, the other one can then be obtained
by the formula rank(7) + nullity(7) = dim(R*) = 4.

(b) Observe that T applied to the first basis vector of f is

T(1,0,0,0) = (0,1,0,0)

and so the first column of [T]g will be . Similarly T applied to

0
1
0
0
the second basis vector of [ is

T(0,1,0,0) = (0,0,1,0)



and so the second column of [T]g will be . Similarly T applied

o = o o

to the third basis vector of [ is
7(0,0,1,0) = (0,0,0,1)
0

and so the third column of [T]g will be . Finally, T applied to

0
0
1
the last basis vector of 3 is

T(0,0,0,1) = (0,0,0,0)

so the fourth column vector of [T]g is

o O OO

we get

715 =

_— o O O

0
) . Putting this all together
0
0
0
0

o O = O
o = O O

To compute [Tz]g, etc., we have two options. One is to multiply the

above matrix with itself several times (since [Tz]g = [T]g[T]g, etc.).
The other is to work out what 72, T3, etc. are and then compute
matrices by feeding in basis vectors as above. We’ll take the latter
route (the problem with the former route is that one can make errors
in the matrix multiplication which are hard to catch, and what’s worse
an error in computing 72 can also mess up 72 and T%).

Since
T(.’L'l, T2, T3, LL'4) = (0, 1,29, .’133)

we see that

T2(.'L'1,./E2,$3,.T4) = T(0,$1,$2,$3) = (070"/1:17'/1:2)
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(One should check this, in order to make sure that one’s substitution
skills are in order!) and similarly

T3($1, T2, T3, .774) = T(Oa 0: T, x2) == (Oa Oa Oa .’131)
and
T*(x1, 29,23, 74) = T7(0,0,0,2;) = (0,0,0,0).

(One can think of these operations as a double right shift, triple right
shift, and quadruple right shift on R*). Feeding in basis vectors, we
obtain

(000 0)
h={1 000
\0 10 0)
0000
" (0000\
Ts=1lo000 |
\1 00 0)
and
0000
S
0000

Q2. (a) Since P3(R) is already a vector space, all we need to show here
is that V' is closed under addition and scalar multiplication.

Let’s show that V is closed under addition. Let f and g be two elements
of V; thus f,g € P3s(R) and f(0) = f(1) = g(0) = ¢g(1) = 0. Then the
polynomial f + g is also in P3(R), and

(f +9)(0) = f(0) +9(0) =0+0=0

and
(f+9)(1)=f(1)+g(1)=0+0=0
and so f + g € V. Thus V is closed under addition.



e Now let’s show that V' is closed under scalar multiplication. Let f be
an element of V; thus f € P3(R) and f(0) = f(1) = 0. Then for any
scalar ¢, the polynomial ¢f is also in P3(R), and

(cf)(0) = cf(0) = 0 =0

and
(cf)(1)=cf(1)=c0=0

and so ¢f € V. Thus V is closed under scalar multiplication.

e (b) There are a couple ways to do this problem. One way is to observe
that if f is in V, then f must have factors z(z — 1), and so (since f
has degree at most 3) f must be of the form

f(z) = (ax + b)x(z — 1) = a(z® — 2*) + b(2* — ).

Thus one can use (z® — 22,22 — z) as a basis; these polynomials can

easily be checked to be in V', and are also clearly linearly independent,
and by the above discussion they span V.

e An alternate approach is to write f in co-ordinates
f(z) = asx® + ay2® + a1z + ay.

The condition f(0) = 0 then translates to ay = 0, while the condition
f(1) = 0 then translates to az + ay + a; + a9 = 0, which simplifies to
as + ag + a; = 0. Thus this space is similar to (indeed, it is isomorphic
to) the space W = { (a1, ap,a3) € R® : a; + ay + a3 = 0}, and any basis
of this two-dimensional space W will correspond to a basis for V. For
instance, one basis for W is (1,0,—1) and (1, —1,0); this corresponds
to the polynomials z — 2% and z — 2%, which is a perfectly acceptable
basis for V. Actually, since V is two-dimensional, any two linearly
independent polynomials in V' will form a basis.

e Q3. There are several ways to prove this statement. The easiest is
to use the dimension theorem - but not quite applied to the original
operator T : V — W. If we apply it to T itself, we get

dim(V') = rank(7’) + nullity (7).
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Since T is one-to-one, nullity(7") = 0, and hence
dim(V) = rank(7) = dim(R(T)) = dim(T'(V)).

This looks like what we want, except that we have V instead of U. To
get around this we have to restrict T' to U - keep the same map T but
reduce the domain from V' to U. This restricted map is usually called
Ty, and it maps U to W (or if you like, from U onto T'(U)). Thus
T|yu :=Tu when u € U, and T'|yu is undefined when v ¢ U. Since T
is one-to-one, the restriction 7’|y is also one-to-one (why?). So we have

dim(U) = rank(7'|y) + nullity(7'|y) = rank(T|y)

= dim(R(T|y)) = dim(T[y(U)) = dim(T'(U))

as desired.

e A more direct proof is as follows. We know that U is finite dimensional;
let’s say it has dimension n. Then U has a basis (uy, us, ..., u,). Since
Uy ..., Uy spans U, Tuy, Tus,...,Tu, span T(U) (see Theorem 3 of
Week 3 notes). Also, since u1, . .., u, are linearly independent and 7 is
one-to-one, Tuy, ..., Tu, is also linearly independent (see Theorem 4
of Week 3 notes). Thus T'uy, ..., Tu, is a basis for T(U), which implies
that 7'(U) has dimension n. Thus dim7'(U) = dimU.

e Another argument is as follows: The map 7 maps U to T'(U), and does
so in a way which is both one-to-one and onto (the onto-ness comes
from the definition of T'(U). Thus U and T'(U) are isomorphic, and
hence have the same dimension (see Lemma 9 of Week 4 notes). One
can twist this argument a little bit and argue instead by contradiction:
if T(U) had larger dimension than U, then the map from U to T(U)
could not be onto (from the dimension theorem), while if T(U) had
smaller dimension than U, then the map from U to T(U) could not
be one-to-one (again from the dimension theorem). Hence the only
remaining possibility is that U and T'(U) have the same dimension.

e Q4. A direct way to pursue this question is as follows. Write w; :=
(1,1,0), we := (1,0,0), ws := (0,0,1), so that v = (wy, we, w3).



e From the given matrix [T]} we see that
T’Ul = Ws3; TUQ = Wa2; T’U3 = w1
and hence

T (v142v5+3v3) = wy+2wa+3wy = (0,0, 1)+(2,0,0)+(3,3,0) = (5,3,1).

e Another way to do this is as follows. Write v := v; 4+ 2v5 + 3v3. Since

[To]" = [T]3[)’

and
1
f=1 2
3
we see that
0 01 1 3
[Tv]"=1 0 1 0 2 1 =1 2
1 00 3 1
Thus

Tv = 3wy + 2wy + ws = (3,3,0) + (2,0,0) + (0,0,1) = (5,3,1).

e Q5. There are several ways to pursue this problem, and there are
several possible correct answers for T. (Incidentally, the question is
asking for T, and not the matrix [T]g of T, but for those of you who
just supplied the matrix, it was pretty clear what you intended here).

e To specify T it would suffice to specify 7" on the standard basis vectors,
i.e. it would suffice to specify 7'(1,0,0), 7/(0,1,0), and 7°(0,0,1). The
vector 7(0,0,1) must be zero since (0,0,1) is in the null space. The
vectors 7(1,0,0) and 7°(0,1,0) cannot be zero since they are not in
the null space, but they must lie in the range R(T"). Furthermore,
T(1,0,0) and 7(0,1,0) must span the range (since 7°(0,0,1) is zero
and thus contributes nothing to the span R(T)). Thus we can set
T(0,0,1) and 7(0,1,0) to be any two linearly independent vectors in
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{(z,y,2) : ¢ +y+ z = 0}. For instance, one could specify 7(1,0,0) =
(1,0,—1) and 7°(0,1,0) = (0,1, —1), in which case

1 0 0

T5=(0 1 o0 |,

-1 -1 0

where [ is the standard ordered basis. This corresponds to the trans-
formation

T(.’L‘, Y, Z) = (.I, Y, —T — y)
(why is this?), which has the desired properties. Other answers are
possible.

Many of you attempted to use the transformation

T(z,y,2) = (z,9,0).

I think the fact that the null space was the z-axis led you to think that
the z co-ordinate of T'(z, vy, z) must always be zero, but this is not the
case. This transformation does have the correct null space (the z-axis),
but has an incorrect range (the range here is the xy-plane, instead of
the plane {(z,y,2) : x +y + 2z = 0}).

Another transformation which almost works, but isn’t quite correct, is
T(J?, Y, Z) = ('7; + Y, —r—Y, O)

This transformation does send the z-axis to zero, but the null space
here is NOT the z-axis - it is substantially bigger! In this case N(T) is
the plane

N(T) ={(z,y,2) 1z +y =0}

which contains the z-axis but is not equal to it. Also, the range is
contained in {(x,y,z) : © +y+ z = 0} but is not equal to it; for
instance, (0,1,—1) lies in {(z,y,2) : © + y + z = 0} but does not lie in
the range of this transformation 7'.

This question tested your understanding of the concepts of null space
and range, and also of the more fundamental concepts of input and



output of a function. The range says something about the output of a
function, but the null space is more concerned with the input; perhaps
the fact that I used the same letters x,y, z to describe both input and
output vectors caused some confusion here. To be clearer about this,
let’s write

T(z,y,z) = (a,b,c)

so that the three outputs a = a(z,vy,2), b = b(z,y,2), c = ¢(z,y, 2)
depend somehow on the three inputs z,y, z. (This describes the most
general possible function 7" from R? to R?). The statement that N(7T)
is the z-axis means two things; firstly, when z = y = 0 (so that (z,y, 2)
is on the z-axis), then a, b, ¢ all have to vanish; secondly, when x and y
are not both zero (so that (z,y, z) does not lie on the z-axis), then a, b, ¢
cannot all vanish (otherwise N(7") would contain something in addition
to the z-axis). Meanwhile, the statement that R(T) = {(z,y,2) :
z +y + z = 0} means two things: first of all, that a + b+ ¢ = 0 for
every choice of input z,y, z, and secondly given any (ay, by, o) with
ag + by + ¢ = 0, we can find inputs z,y, z such that a(z,y,2) = ay,
b(x,y, z) = by, and ¢(z,y, z) = cy. So as you can see the notions of null
space and range do require some care to distinguish between the inputs
and outputs (here denoted by (z, vy, z) and (a, b, ¢) respectively).

e To compute the nullity, we first compute the null space. A vector

x1

ZTo | is in the null space if

xs3
11 2 T 0
21 3 ) = 0
31 4 T3 0

or in other words that
1+ o+ 2373 =0

2371 +$2+3.’E3:0
3$1+$2+4.’L‘3:O.



Now we do some Gaussian elimination. Subtracting two copies of the
first row from the second, and subtracting three copies of the first row
from the third, we obtain

.’L‘1+l‘2+2$3:0

—To — X3 = 0
—2.%2 — 2%3 =0.
Multiplying the second row by —1, and then adding two copies of that
row to the third, we get
x|+ o + 2373 =0

.’132“{‘.’13'3:0
0=0.

We can write this in terms of x5 as
To = —T3; r1 = —I3.
Thus the null space is given by

N(T)={| —z3 | :23 €R}
Z3

(indeed, one can easily check that every vector of the form | —x3
T3
gets sent to zero by T'). This space is one-dimensional (indeed, it is the
-1
span of {|[ —1 |]}), and so the nullity of 7" is 1. Hence the rank is 2.
1



