(Partial) Solutions to Homework 4

Jon Handy

Q4:

Claim. If V is a vector space and $T: V \to V$ is a linear map then $T^2 = 0$ iff $R(T) \subset N(T)$.

Proof: If $R(T) \subset N(T)$ then, since T(V) = R(T) by definition, $T^2(V) = T(T(V)) = T(R(T)) \subset T(N(T)) = \{0\}$, since $T(N(T)) = \{0\}$ by the definition of N(T). Since 0 is clearly an element of $T^2(V)$ ($T^2(0) = 0$), we have that $T^2(V) = \{0\}$. Thus for every $v \in V$, $T^2v = 0$, i.e. T^2 is the zero map. [Here we have used the fact that $X \subset Y$ implies $T(X) \subset T(Y)$. If this is unclear then let me know, but think about it a little first.]

Conversely, if T^2 is the zero map then, using the same trick, we have that $T^2(V) = T(R(T)) = \{0\}$. Yet then every vector $v \in R(T)$ must have the property that Tv = 0. Since N(T) is, by definition, the set of all vectors in V with this property, we find that $R(T) \subset N(T)$.

Q6:

Claim. If A is invertible and AB = 0 then B = 0.

Proof: We have

$$AB = 0$$

$$A^{-1}AB = A^{-1}0$$

$$B = 0.$$

Q8:

Claim. The map $T: P_3(\mathbb{R}) \to M_2(\mathbb{R})$ defined by

$$T(f) = \left(\begin{array}{cc} f(1) & f(2) \\ f(3) & f(4) \end{array}\right)$$

is injective.

Proof: There is a somewhat simpler proof than Lagrange interpolation if you happen to remember the following fact:

a nonzero polynomial of degree n has at most n zeros.

The matrix T(f) is zero iff the polynomial f has zeros at 0,1,2, and 3-that is four zeros. Because of the basic fact stated above, any polynomial $f \in P_3(\mathbb{R})$ which maps to the zero matrix must therefore be the

zero polynomial.

Q9:

Claim. Let U, V, W be vector spaces.

- 1. The space U is isomorphic to U.
- 2. If U is isomorphic to V, then V is isomorphic to U.
- 3. If U is isomorphic to V, and V is isomorphic to W, then U is isomorphic to W.
- **Proof:** 1. Clearly the identity map $I:U\to U$ defined by Iu=u for each $u\in U$ is a bijective (one-to-one and onto) linear map. It follows that U is isomorphic to U.

- 2. If U is isomorphic to V, there must be an invertible linear map $T:U\to V$ between them. Yet then $T^{-1}:V\to U$ is an invertible linear map, whence V is isomorphic to U.
- 3. If U is isomorphic to V, and V is isomorphic to W, then there are invertible linear maps $T:U\to V$ and $S:V\to W$. Since we know that $(ST)^{-1}=T^{-1}S^{-1}$ the transformation $ST:U\to W$ is invertible, so U is isomorphic to W.