(Partial) Solutions to Homework 8

Jon Handy

Q4:

Claim (Parseval's Identity). If $\{v_i\}_{i=1}^n$ is an orthonormal basis for V then for any $x, y \in V$,

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

Proof: We know (by Theorem 9 of the notes, for instance) that

$$y = \sum_{i=1}^{n} \langle y, v_i \rangle v_i,$$

so

$$\langle x, y \rangle = \left\langle x, \sum_{i=1}^{n} \langle v_i, y \rangle v_i \right\rangle$$

$$= \sum_{i=1}^{n} \langle x, \langle v_i, y \rangle v_i \rangle$$

$$= \sum_{i=1}^{n} \langle v_i, y \rangle \langle x, v_i \rangle$$

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle},$$

as asserted.

Q8:

Claim. If A is an $n \times n$ matrix with n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ then $\det(A) = \prod_{i=1}^n \lambda_i$ and $tr(A) = \sum_{i=1}^n \lambda_i$.

Proof: Since A has n distinct eigenvalues, A is diagonalizable. Let Q be an invertible matrix such that $QAQ^{-1} = D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Then $\det(A) = \det(Q^{-1}DQ) = \det(Q) \det(Q)^{-1} \det(D) = \det(D)$. Since $\det(D) = \prod_{i=1}^{n} \lambda_i$, the first part of the assertion follows.

For the second assertion, we use the fact that $\operatorname{tr}(ABC)=\operatorname{tr}(CAB)$ for any three $n\times n$ matrices $A,\ B,\ \operatorname{and}\ C$ (just let me know if you have any questions about this). Then $\operatorname{tr}(A)=\operatorname{tr}(Q^{-1}DQ)=\operatorname{tr}(QQ^{-1}D)=\operatorname{tr}(D)$. Since $\operatorname{tr}(D)=\sum_1^n\lambda_i$, this provides the second part of the assertion.

Q9:

 $\textbf{Claim.} \ \textit{If V is a finite-dimensional inner product space and W is a subspace of V then $(W^{\perp})^{\perp}=W$.}$

Proof: Let $\{w_1,\ldots,w_k\}$ be a basis of W, which we may and do choose to be orthonormal via the Gram-Schmidt process, and let $\{w_1,\ldots,w_k,v_{k+1},\ldots,v_n\}$ be an extension of this basis to an orthonormal basis of V. Given $x\in V$, write $x=\sum_{1}^k\alpha_iw_i+\sum_{k=1}^n\beta_jv_j$. Then $x\in W^\perp$ iff for every w_ℓ , $1\leq \ell\leq k$,

$$\langle w_{\ell}, x \rangle = \sum_{j=k+1}^{n} \alpha_{i} \langle w_{\ell}, w_{i} \rangle + \sum_{j=k+1}^{n} \beta_{j} \langle w_{\ell}, v_{j} \rangle$$

$$= \sum_{j=k+1}^{n} \alpha_{i} \delta_{\ell i}$$

$$\langle w_{\ell}, x \rangle = \alpha_{\ell} = 0,$$

since $\langle w_\ell, v_j \rangle = 0$ for every j, so we must have $\alpha_i = 0$ for every i. Thus $x \in W^\perp$ iff x has the form

$$x = \sum_{j=k+1}^{n} \beta_j v_j,$$

i.e. $W^{\perp} = \operatorname{span}(v_{k+1}, \dots, v_n)$. If we then reverse this argument, we find that $x \in (W^{\perp})^{\perp}$ iff $\beta_j = 0$ for every j, i.e. $x \in \operatorname{span}(w_1, \dots, w_k) = W$.

Remark: This also holds in complete inner product spaces of infinite dimension (known as Hilbert spaces), but the arguments involved are quite a bit more sophisticated.