(Partial) Solutions to Homework 6

Jon Handy

Q4: I just thought I would point out the following trick, which might some day make your lives easier (maybe). In parts (d) and (e), you found that the transformations were represented by matrices

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix},$$

so that one is just like the other up to a permutation of rows. Specifically,

$$B = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right) A.$$

Thus we find that B^{-1} is given by

$$B^{-1} = A^{-1} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^{-1}$$
$$= A^{-1} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

a calculation rather easier than repeating the applications of elementary row operations.

Q7:

Claim. Let U, V, and W be finite dimensional vector spaces, and let $S:V\to W$ and $T:U\to V$ be linear transformations.

- 1. rank(ST) < rank(S)
- 2. $rank(ST) \leq rank(T)$
- 3. $\operatorname{nullity}(ST) > \operatorname{nullity}(T)$

Proof: 1. Since $T(U) \subset V$, we have that $S(T(U)) \subset S(V)$, whence

$$\dim S(T(U)) \leq \dim S(V)$$

$$\dim ST(U) \leq \dim S(V)$$

$$\operatorname{rank}(ST) \leq \operatorname{rank}(S).$$

2. By the dimension theorem, letting $S|_{T(U)}$ denote the restriction of S to the range of T,

$$\operatorname{rank}(S|_{T(U)}) + \operatorname{nullity}(S|_{T(U)}) = \operatorname{dim}(T(U))$$

$$\operatorname{rank}(ST) + \operatorname{nullity}(S|_{T(U)}) = \operatorname{rank}(T)$$

$$\operatorname{rank}(ST) < \operatorname{rank}(T),$$

where in the last line we have used the fact that $\operatorname{nullity}(S|_{T(U)}) \geq 0$.

3. By the dimension theorem,

$$rank(ST) + nullity(ST) = \dim U$$
 $rank(T) + nullity(T) = \dim U.$

Thus we have

$$rank(ST) + nullity(ST) = rank(T) + nullity(T)$$

 $nullity(ST) > nullity(T),$

since $\operatorname{rank}(ST) \leq \operatorname{rank}(T)$. (If you aren't sure you believe this, consider the equation $\operatorname{nullity}(T) - \operatorname{nullity}(ST) = \operatorname{rank}(ST) - \operatorname{rank}(T) \leq 0$).

Q8:

Claim. If A and B are $n \times n$ matrices then $(AB)^t = B^t A^t$.

Proof: Let us write $A = (A_{ij})$ and $B = (B_{ij})$. Then we have

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

$$(AB)_{ij}^{t} = (AB)_{ji} = \sum_{k=1}^{n} A_{jk} B_{ki}$$

$$(AB)_{ij}^{t} = \sum_{k=1}^{n} A_{kj}^{t} B_{ik}^{t}$$

$$(AB)_{ij}^{t} = \sum_{j=1}^{n} B_{ik}^{t} A_{kj}^{t}$$

$$(AB)_{ij}^{t} = (B^{t} A^{t})_{ij},$$

which yields the desired inequality.

Q9:

Claim. If A is an invertible $n \times n$ matrix then $\det(A^{-1}) = 1/\det A$.

Proof: By the multiplicative property of determinants, we have $1 = \det I_n = \det(AA^{-1}) = \det A \det(A^{-1})$, i.e. $\det A \det(A^{-1}) = 1$. Thus $\det(A^{-1}) = 1/\det A$.